Home
Class 12
MATHS
int(0)^(4)(|x-1|+|x-3|)dx...

`int_(0)^(4)(|x-1|+|x-3|)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{0}^{4} (|x-1| + |x-3|) \, dx \), we need to analyze the absolute value expressions and break the integral into appropriate intervals. ### Step 1: Identify the points where the expressions change The absolute value functions \( |x-1| \) and \( |x-3| \) change at \( x = 1 \) and \( x = 3 \). Therefore, we will consider the intervals: - \( [0, 1] \) - \( [1, 3] \) - \( [3, 4] \) ### Step 2: Rewrite the integral in terms of these intervals We can express the integral as: \[ \int_{0}^{4} (|x-1| + |x-3|) \, dx = \int_{0}^{1} (-(x-1) - (x-3)) \, dx + \int_{1}^{3} ((x-1) + (-(x-3))) \, dx + \int_{3}^{4} ((x-1) + (x-3)) \, dx \] ### Step 3: Simplify each interval 1. For \( x \in [0, 1] \): \[ |x-1| = -(x-1) = 1-x \quad \text{and} \quad |x-3| = -(x-3) = 3-x \] Thus, \[ |x-1| + |x-3| = (1-x) + (3-x) = 4 - 2x \] 2. For \( x \in [1, 3] \): \[ |x-1| = x-1 \quad \text{and} \quad |x-3| = -(x-3) = 3-x \] Thus, \[ |x-1| + |x-3| = (x-1) + (3-x) = 2 \] 3. For \( x \in [3, 4] \): \[ |x-1| = x-1 \quad \text{and} \quad |x-3| = x-3 \] Thus, \[ |x-1| + |x-3| = (x-1) + (x-3) = 2x - 4 \] ### Step 4: Write the integral with the simplified expressions Now we can write the integral as: \[ \int_{0}^{1} (4 - 2x) \, dx + \int_{1}^{3} 2 \, dx + \int_{3}^{4} (2x - 4) \, dx \] ### Step 5: Calculate each integral 1. **First integral**: \[ \int_{0}^{1} (4 - 2x) \, dx = \left[ 4x - x^2 \right]_{0}^{1} = (4 \cdot 1 - 1^2) - (4 \cdot 0 - 0^2) = 4 - 1 = 3 \] 2. **Second integral**: \[ \int_{1}^{3} 2 \, dx = \left[ 2x \right]_{1}^{3} = 2 \cdot 3 - 2 \cdot 1 = 6 - 2 = 4 \] 3. **Third integral**: \[ \int_{3}^{4} (2x - 4) \, dx = \left[ x^2 - 4x \right]_{3}^{4} = (4^2 - 4 \cdot 4) - (3^2 - 4 \cdot 3) = (16 - 16) - (9 - 12) = 0 + 3 = 3 \] ### Step 6: Combine the results Now, we sum the results of the three integrals: \[ 3 + 4 + 3 = 10 \] ### Final Answer Thus, the value of the integral \( \int_{0}^{4} (|x-1| + |x-3|) \, dx \) is \( \boxed{10} \).
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 1|64 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 1 Part-II|75 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise High Level Problem|26 Videos
  • COMBINATORICS

    RESONANCE ENGLISH|Exercise Exercise-2 (Part-II: Previously Asked Question of RMO)|5 Videos
  • DPP

    RESONANCE ENGLISH|Exercise QUESTION|656 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(4) |x-1|dx

int_(0)^(3)(|x|+|x-1|+|x-2|)dx equals

int_(0)^(4)({[x]})dx

int_(0)^(1) |5x -3 | dx =?

int_(0)^(1) x dx

Evaluate: int_0^1|5x-3|dx (ii) int_0^pi|cosx|dx (iii) int_(-5)^5|x-2|dx (iv) int_(-1)^1e^(|x|)dx (v) int_0^2|x^2+2x-3|dx (v) int_1^4(|x-1|+|x-2|+|x-3|)dx (vi) int_(-1)^2|x^3-x|dx

Evaluate : int_(0)^(4) x(4-x)^(3//2)dx

int_0^4 (2x-1) dx

int_(-4)^(5)(x-x^(3))dx is

int_(0)^(3)(x^(2)+1)dx