Home
Class 12
MATHS
int(0)^(9)[sqrt(t)]dt....

`int_(0)^(9)[sqrt(t)]dt`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{9} \lfloor \sqrt{t} \rfloor \, dt \), we will break it down into intervals based on the values of \( \lfloor \sqrt{t} \rfloor \). ### Step 1: Identify the intervals for \( \lfloor \sqrt{t} \rfloor \) - For \( 0 \leq t < 1 \): \( \lfloor \sqrt{t} \rfloor = 0 \) - For \( 1 \leq t < 4 \): \( \lfloor \sqrt{t} \rfloor = 1 \) - For \( 4 \leq t < 9 \): \( \lfloor \sqrt{t} \rfloor = 2 \) - For \( t = 9 \): \( \lfloor \sqrt{9} \rfloor = 3 \) ### Step 2: Split the integral into parts We can express the integral as: \[ I = \int_{0}^{1} \lfloor \sqrt{t} \rfloor \, dt + \int_{1}^{4} \lfloor \sqrt{t} \rfloor \, dt + \int_{4}^{9} \lfloor \sqrt{t} \rfloor \, dt \] ### Step 3: Evaluate each integral 1. **For \( \int_{0}^{1} \lfloor \sqrt{t} \rfloor \, dt \)**: \[ \int_{0}^{1} 0 \, dt = 0 \] 2. **For \( \int_{1}^{4} \lfloor \sqrt{t} \rfloor \, dt \)**: \[ \int_{1}^{4} 1 \, dt = 1 \cdot (4 - 1) = 3 \] 3. **For \( \int_{4}^{9} \lfloor \sqrt{t} \rfloor \, dt \)**: \[ \int_{4}^{9} 2 \, dt = 2 \cdot (9 - 4) = 10 \] ### Step 4: Combine the results Now, we combine the results from each part: \[ I = 0 + 3 + 10 = 13 \] ### Final Answer Thus, the value of the integral is: \[ \boxed{13} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 1|64 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 1 Part-II|75 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise High Level Problem|26 Videos
  • COMBINATORICS

    RESONANCE ENGLISH|Exercise Exercise-2 (Part-II: Previously Asked Question of RMO)|5 Videos
  • DPP

    RESONANCE ENGLISH|Exercise QUESTION|656 Videos

Similar Questions

Explore conceptually related problems

For x epsilon(0,(5pi)/2) , definite f(x)=int_(0)^(x)sqrt(t) sin t dt . Then f has

int_(0)^(9)sqrt(x)/(sqrt(x)+sqrt(9-x))dx=(9)/(2)

int sqrt(t)dt

int(1)/(sqrt(t))dt

int(dt)/( sqrt(t-1))

int(1)/(sqrt(t)+1)dt

int(dt)/( sqrt(1-t)-t)

If int_(0)^(x)f(t)dt=e^(x)-ae^(2x)int_(0)^(1)f(t)e^(-t)dt , then

If int_(0)^(x^(2)) sqrt(1+t^(2)) dt, then f'(x)n equals

Let f be a continuous function satisfying the equation int_(0)^(x)f(t)dt+int_(0)^(x)tf(x-t)dt=e^(-x)-1 , then find the value of e^(9)f(9) is equal to…………………..