Home
Class 12
MATHS
int(-pi//2)^(pi//2)sin^(7)xdx...

`int_(-pi//2)^(pi//2)sin^(7)xdx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^7 x \, dx\), we can follow these steps: ### Step 1: Define the function Let \( f(x) = \sin^7 x \). ### Step 2: Check if the function is odd or even To determine if \( f(x) \) is odd or even, we need to evaluate \( f(-x) \): \[ f(-x) = \sin^7(-x) = (-\sin x)^7 = -\sin^7 x = -f(x) \] Since \( f(-x) = -f(x) \), we conclude that \( f(x) \) is an odd function. ### Step 3: Apply the property of definite integrals for odd functions We know that the integral of an odd function over a symmetric interval around zero is zero: \[ \int_{-a}^{a} f(x) \, dx = 0 \quad \text{if } f(x) \text{ is odd} \] In our case, since \( f(x) \) is odd and the interval is \([- \frac{\pi}{2}, \frac{\pi}{2}]\), we can conclude: \[ \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^7 x \, dx = 0 \] ### Final Answer Thus, the value of the integral is: \[ \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^7 x \, dx = 0 \] ---
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 1|64 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 1 Part-II|75 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise High Level Problem|26 Videos
  • COMBINATORICS

    RESONANCE ENGLISH|Exercise Exercise-2 (Part-II: Previously Asked Question of RMO)|5 Videos
  • DPP

    RESONANCE ENGLISH|Exercise QUESTION|656 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int_(-pi//2)^(pi//2)sin^7x dx

Prove that : (i) int_(-pi)^(pi) x^(10) sin^(7) x dx =0 (ii) int_(-pi)^(pi) (sin^(25) x+x^(75))dx=0 (iii) int_(-pi)^(pi) e^(|x|) dx= 2 (e-1) (iv) int_(-pi//2)^(pi//2) sin^(9) x dx =0

By using the properties of definite integrals, evaluate the integrals int_(-pi/2)^(pi/2)sin^7x dx

Evaluate: int_(-pi//2)^(pi//2)sin^2x\ dx

int_(-pi//2)^(pi//2)sin^(5)xcos^(4)xdx

int_(-pi//2)^(pi//2) sin^(2)x cos^(2) x(sin xcos x)dx=

Evaluate the following integral: int_(-pi//4)^(pi//2)"sin" xdx

I_(1)=int_(0)^((pi)/2)(sinx-cosx)/(1+sinxcosx)dx, I_(2)=int_(0)^(2pi)cos^(6)dx , I_(3)=int_(-(pi)/2)^((pi)/2)sin^(3)xdx, I_(4)=int_(0)^(1) In (1/x-1)dx . Then

Evaluate : int_(-pi/2) ^(pi/2) sin^2x dx

int_(-pi //2)^(pi//2) sin |x|dx is equal to