Home
Class 12
MATHS
int(0)^(pi)(x)/(1+sinx)dx....

`int_(0)^(pi)(x)/(1+sinx)dx`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{\pi} \frac{x}{1 + \sin x} \, dx \), we can use a symmetry property of definite integrals. Here’s a step-by-step solution: ### Step 1: Define the Integral Let \[ I = \int_{0}^{\pi} \frac{x}{1 + \sin x} \, dx \] ### Step 2: Use the Property of Definite Integrals We can use the property of definite integrals which states that: \[ \int_{0}^{a} f(x) \, dx = \int_{0}^{a} f(a - x) \, dx \] In our case, we set \( a = \pi \): \[ I = \int_{0}^{\pi} \frac{\pi - x}{1 + \sin(\pi - x)} \, dx \] Since \( \sin(\pi - x) = \sin x \), we can rewrite the integral as: \[ I = \int_{0}^{\pi} \frac{\pi - x}{1 + \sin x} \, dx \] ### Step 3: Combine the Two Integrals Now we have two expressions for \( I \): 1. \( I = \int_{0}^{\pi} \frac{x}{1 + \sin x} \, dx \) 2. \( I = \int_{0}^{\pi} \frac{\pi - x}{1 + \sin x} \, dx \) Adding these two equations gives: \[ 2I = \int_{0}^{\pi} \left( \frac{x + (\pi - x)}{1 + \sin x} \right) \, dx = \int_{0}^{\pi} \frac{\pi}{1 + \sin x} \, dx \] ### Step 4: Simplify the Integral Thus, we have: \[ 2I = \pi \int_{0}^{\pi} \frac{1}{1 + \sin x} \, dx \] Now we need to evaluate the integral \( \int_{0}^{\pi} \frac{1}{1 + \sin x} \, dx \). ### Step 5: Multiply and Divide by \( 1 - \sin x \) To simplify \( \frac{1}{1 + \sin x} \), we multiply and divide by \( 1 - \sin x \): \[ \int_{0}^{\pi} \frac{1 - \sin x}{(1 + \sin x)(1 - \sin x)} \, dx = \int_{0}^{\pi} \frac{1 - \sin x}{\cos^2 x} \, dx \] This simplifies to: \[ \int_{0}^{\pi} \left( \frac{1}{\cos^2 x} - \frac{\sin x}{\cos^2 x} \right) \, dx = \int_{0}^{\pi} \sec^2 x \, dx - \int_{0}^{\pi} \sec x \tan x \, dx \] ### Step 6: Evaluate the Integrals The integral of \( \sec^2 x \) is \( \tan x \): \[ \int_{0}^{\pi} \sec^2 x \, dx = \tan(\pi) - \tan(0) = 0 - 0 = 0 \] The integral of \( \sec x \tan x \) is \( \sec x \): \[ \int_{0}^{\pi} \sec x \tan x \, dx = \sec(\pi) - \sec(0) = -1 - 1 = -2 \] ### Step 7: Combine Results Thus, \[ \int_{0}^{\pi} \frac{1}{1 + \sin x} \, dx = 0 - (-2) = 2 \] Now substituting back: \[ 2I = \pi \cdot 2 \implies I = \pi \] ### Final Result The value of the integral is: \[ \boxed{\pi} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 1|64 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 1 Part-II|75 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise High Level Problem|26 Videos
  • COMBINATORICS

    RESONANCE ENGLISH|Exercise Exercise-2 (Part-II: Previously Asked Question of RMO)|5 Videos
  • DPP

    RESONANCE ENGLISH|Exercise QUESTION|656 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following : int_(0)^(pi)(dx)/(1+sinx)

int_(0)^( pi)(dx)/(1+sin x)

int_0^(pi/4) (1)/(1+sinx)dx

int_0^(pi/4) (1)/(1-sinx)dx

If int_(0)^(pi)((x)/(1+sinx))^(2) dx=A, then the value for int_(0)^(pi)(2x^(2). cos^(2)x//2)/((1+ sin x^(2)))dx is equal to

Prove that int_(0)^(tan^(-1)x)/x dx=1/2int_(0)^((pi)/2)x/(sinx)dx .

Evaluate int_(0)^(pi//4)(dx)/(1+sinx)

int_(0)^( pi)(dx)/(1+cos x)

int_(0)^(pi) x log sinx dx

int_0^(pi/2) (dx)/(4+sinx)