Home
Class 12
MATHS
int(0)^(pi//2)(x)/(sinx+cosx)dx....

`int_(0)^(pi//2)(x)/(sinx+cosx)dx`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{\frac{\pi}{2}} \frac{x}{\sin x + \cos x} \, dx \), we will use the property of definite integrals that states: \[ \int_{0}^{a} f(x) \, dx = \int_{0}^{a} f(a - x) \, dx \] ### Step 1: Set up the integral We start with the integral: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{x}{\sin x + \cos x} \, dx \] ### Step 2: Apply the property of definite integrals Using the property mentioned, we can rewrite the integral as: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\frac{\pi}{2} - x}{\sin\left(\frac{\pi}{2} - x\right) + \cos\left(\frac{\pi}{2} - x\right)} \, dx \] ### Step 3: Simplify the integrand We know that: \[ \sin\left(\frac{\pi}{2} - x\right) = \cos x \quad \text{and} \quad \cos\left(\frac{\pi}{2} - x\right) = \sin x \] Thus, we can simplify the denominator: \[ \sin\left(\frac{\pi}{2} - x\right) + \cos\left(\frac{\pi}{2} - x\right) = \cos x + \sin x \] Now, substituting this back into the integral gives us: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\frac{\pi}{2} - x}{\sin x + \cos x} \, dx \] ### Step 4: Combine the two expressions for \( I \) Now we have two expressions for \( I \): 1. \( I = \int_{0}^{\frac{\pi}{2}} \frac{x}{\sin x + \cos x} \, dx \) 2. \( I = \int_{0}^{\frac{\pi}{2}} \frac{\frac{\pi}{2} - x}{\sin x + \cos x} \, dx \) Adding these two equations gives: \[ 2I = \int_{0}^{\frac{\pi}{2}} \frac{\frac{\pi}{2}}{\sin x + \cos x} \, dx \] ### Step 5: Solve for \( I \) Thus, we can express \( I \) as: \[ I = \frac{1}{2} \int_{0}^{\frac{\pi}{2}} \frac{\frac{\pi}{2}}{\sin x + \cos x} \, dx \] ### Step 6: Calculate the integral Now, we need to evaluate the integral: \[ \int_{0}^{\frac{\pi}{2}} \frac{1}{\sin x + \cos x} \, dx \] We can factor out \( \frac{\pi}{2} \): \[ I = \frac{\pi}{4} \int_{0}^{\frac{\pi}{2}} \frac{1}{\sin x + \cos x} \, dx \] ### Step 7: Evaluate \( \int_{0}^{\frac{\pi}{2}} \frac{1}{\sin x + \cos x} \, dx \) We know that: \[ \sin x + \cos x = \sqrt{2} \sin\left(x + \frac{\pi}{4}\right) \] Thus, we can rewrite the integral: \[ \int_{0}^{\frac{\pi}{2}} \frac{1}{\sin x + \cos x} \, dx = \int_{0}^{\frac{\pi}{2}} \frac{1}{\sqrt{2} \sin\left(x + \frac{\pi}{4}\right)} \, dx \] This integral evaluates to \( \frac{\pi}{2\sqrt{2}} \). ### Step 8: Substitute back to find \( I \) Now substituting back, we have: \[ I = \frac{\pi}{4} \cdot \frac{\pi}{2\sqrt{2}} = \frac{\pi^2}{8\sqrt{2}} \] ### Final Answer Thus, the final result for the integral is: \[ I = \frac{\pi^2}{8\sqrt{2}} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 1|64 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 1 Part-II|75 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise High Level Problem|26 Videos
  • COMBINATORICS

    RESONANCE ENGLISH|Exercise Exercise-2 (Part-II: Previously Asked Question of RMO)|5 Videos
  • DPP

    RESONANCE ENGLISH|Exercise QUESTION|656 Videos

Similar Questions

Explore conceptually related problems

Evaluate :- int_(0)^(pi//2)(sinx+cosx)dx

Prove that: int_0^(pi//2)(sin x)/(sinx-cosx)dx=pi/4

Given int_(0)^(pi//2)(dx)/(1+sinx+cosx)=A . Then the value of the definite integral int_(0)^(pi//2)(sinx)/(1+sinx+cosx)dx is equal to

Prove that: int_(0)^(pi//2) (sinx)/(sinx +cos x)d dx =(pi)/(4)

int_(0)^(pi//2) x sinx cos x dx=?

Evaluate int_(0)^((pi)/2)(sin3x)/(sinx+cosx) dx .

Evaluate int_(0)^(pi//2)|sinx-cosx|dx .

Evaluate : int_0^(pi/2)(sinx+cosx)dx

int_(0)^(pi)(x)/(1+sinx)dx .

int _0^(pi/2) (sin^2x)/(sinx+cosx)dx