Home
Class 12
MATHS
int(0)^(pi/2)(dx)/(1+sqrt(cotx))...

`int_(0)^(pi/2)(dx)/(1+sqrt(cotx))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{\frac{\pi}{2}} \frac{dx}{1 + \sqrt{\cot x}} \), we can follow these steps: ### Step 1: Rewrite the Integral Start by rewriting the integral in terms of sine and cosine: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{dx}{1 + \sqrt{\cot x}} = \int_{0}^{\frac{\pi}{2}} \frac{dx}{1 + \sqrt{\frac{\cos x}{\sin x}}} \] This can be rewritten as: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{dx}{1 + \frac{\sqrt{\cos x}}{\sqrt{\sin x}}} = \int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}} \, dx \] ### Step 2: Use a Symmetry Property Now, we can use the property of definite integrals: \[ \int_{0}^{a} f(x) \, dx = \int_{0}^{a} f(a - x) \, dx \] In our case, let \( a = \frac{\pi}{2} \): \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\sin\left(\frac{\pi}{2} - x\right)}}{\sqrt{\sin\left(\frac{\pi}{2} - x\right)} + \sqrt{\cos\left(\frac{\pi}{2} - x\right)}} \, dx \] Since \( \sin\left(\frac{\pi}{2} - x\right) = \cos x \) and \( \cos\left(\frac{\pi}{2} - x\right) = \sin x \), we have: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} \, dx \] ### Step 3: Add the Two Integrals Now we can add the two expressions for \( I \): \[ 2I = \int_{0}^{\frac{\pi}{2}} \left( \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}} + \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} \right) \, dx \] The denominators are the same, so we can combine the fractions: \[ 2I = \int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\sin x} + \sqrt{\cos x}}{\sqrt{\sin x} + \sqrt{\cos x}} \, dx = \int_{0}^{\frac{\pi}{2}} 1 \, dx \] ### Step 4: Evaluate the Integral Now, we can evaluate the integral: \[ 2I = \int_{0}^{\frac{\pi}{2}} 1 \, dx = \left[ x \right]_{0}^{\frac{\pi}{2}} = \frac{\pi}{2} - 0 = \frac{\pi}{2} \] Thus, we have: \[ 2I = \frac{\pi}{2} \implies I = \frac{\pi}{4} \] ### Final Answer The value of the integral is: \[ \boxed{\frac{\pi}{4}} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 1|64 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 1 Part-II|75 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise High Level Problem|26 Videos
  • COMBINATORICS

    RESONANCE ENGLISH|Exercise Exercise-2 (Part-II: Previously Asked Question of RMO)|5 Videos
  • DPP

    RESONANCE ENGLISH|Exercise QUESTION|656 Videos

Similar Questions

Explore conceptually related problems

Evaluate : int_0^(pi/2)(dx)/(1+sqrt(tanx))

int_(0)^(pi//2)(dx)/(1+e^(sqrt(2)cos(x+(pi)/(4)))) is equal to

Evaluate: int_(pi/6)^(pi/3)(dx)/(1+sqrt(tanx))

Evaluate int_(pi/6)^(pi/3)(dx)/(1+sqrt(tanx))

Evaluate : int_(0)^((pi)/2)) (sqrt(cot x))/(sqrt(cot x)+ sqrt(tan x)) dx

36/piint_(pi//6)^(pi//3)(dx)/(1+sqrt(cotx)) equals to

int_(0)^(pi//2)(dx)/(1+tanx) is

int_(0)^(pi//2) sqrt(1- cos 2x) dx

int_(0)^(pi//2) sqrt(1- cos 2x) dx

Prove that : int_(0)^(pi//2) (sqrt(cos x))/(sqrt(sin x+ sqrt(cos x)))dx=(pi)/(4)