Home
Class 12
MATHS
int(0)^(oo)((ln(1+x^(2)))/(1+x^(2)))dx....

`int_(0)^(oo)((ln(1+x^(2)))/(1+x^(2)))dx`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{0}^{\infty} \frac{\ln(1+x^2)}{1+x^2} \, dx, \] we will use a substitution and properties of definite integrals. ### Step-by-Step Solution: **Step 1: Substitution** Let \( x = \tan \theta \). Then, \( dx = \sec^2 \theta \, d\theta \). **Step 2: Change of Limits** When \( x = 0 \), \( \theta = 0 \). When \( x \to \infty \), \( \theta \to \frac{\pi}{2} \). **Step 3: Transform the Integral** Substituting these into the integral gives: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\ln(1+\tan^2 \theta)}{1+\tan^2 \theta} \sec^2 \theta \, d\theta. \] Using the identity \( 1 + \tan^2 \theta = \sec^2 \theta \), we can simplify: \[ I = \int_{0}^{\frac{\pi}{2}} \frac{\ln(\sec^2 \theta)}{\sec^2 \theta} \sec^2 \theta \, d\theta = \int_{0}^{\frac{\pi}{2}} \ln(\sec^2 \theta) \, d\theta. \] **Step 4: Simplify the Logarithm** Using the property of logarithms, \( \ln(a^b) = b \ln(a) \): \[ I = 2 \int_{0}^{\frac{\pi}{2}} \ln(\sec \theta) \, d\theta. \] **Step 5: Change of Variable** Let \( J = \int_{0}^{\frac{\pi}{2}} \ln(\cos \theta) \, d\theta \). We will relate \( I \) to \( J \). **Step 6: Use Symmetry Property** Using the property of definite integrals: \[ J = \int_{0}^{\frac{\pi}{2}} \ln(\sin \theta) \, d\theta, \] we can write: \[ 2J = \int_{0}^{\frac{\pi}{2}} \ln(\sin \theta) \, d\theta + \int_{0}^{\frac{\pi}{2}} \ln(\cos \theta) \, d\theta = \int_{0}^{\frac{\pi}{2}} \ln(\sin \theta \cos \theta) \, d\theta. \] **Step 7: Use the Double Angle Identity** Using \( \sin(2\theta) = 2 \sin \theta \cos \theta \): \[ 2J = \int_{0}^{\frac{\pi}{2}} \ln\left(\frac{1}{2} \sin(2\theta)\right) \, d\theta = \int_{0}^{\frac{\pi}{2}} \ln(\sin(2\theta)) \, d\theta - \int_{0}^{\frac{\pi}{2}} \ln(2) \, d\theta. \] **Step 8: Change of Variable in the Integral** Let \( u = 2\theta \), then \( d\theta = \frac{1}{2} du \): \[ 2J = \frac{1}{2} \int_{0}^{\pi} \ln(\sin u) \, du - \frac{\pi}{2} \ln(2). \] **Step 9: Evaluate the Integral** The integral \( \int_{0}^{\pi} \ln(\sin u) \, du = -\pi \ln(2) \). Thus: \[ 2J = \frac{1}{2} (-\pi \ln(2)) - \frac{\pi}{2} \ln(2) = -\pi \ln(2). \] **Step 10: Relate Back to \( I \)** Thus, \( J = -\frac{\pi}{2} \ln(2) \) and substituting back into \( I \): \[ I = 2J = -\pi \ln(2). \] ### Final Answer: \[ I = -\pi \ln(2). \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 1|64 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 1 Part-II|75 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise High Level Problem|26 Videos
  • COMBINATORICS

    RESONANCE ENGLISH|Exercise Exercise-2 (Part-II: Previously Asked Question of RMO)|5 Videos
  • DPP

    RESONANCE ENGLISH|Exercise QUESTION|656 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(oo)((tan^(-1)x)/((1+x^(2))))dx

STATEMENT-1 : int_(0)^(oo)(dx)/(1+e^(x))=ln2-1 STATEMENT-2 : int_(0)^(oo)(sin(tan^(-1)))/(1+x^(2))dx=pi STATEMENT-3 : int_(0)^(pi^(2)//4)(sinsqrt(x))/(sqrt(x))dx=1

int_(0)^(oo)(x^(2)+1)/(x^(4)+7x^(2)+1)dx=

Evaluate : int_(0)^(1)(log(1+x))/(1+x^2)dx

The value of int_(0)^(1)(8log(1+x))/(1+x^(2))dx is

Prove that int_(0)^(oo) (sin^(2)x)/(x^(2))dx=int_(0)^(oo) (sinx)x dx

Let I_(1)=int_(0)^(oo)(x^(2)sqrtx)/((1+x)^(6))dx,I_(2)=int_(0)^(oo)(xsqrtx)/((1+x)^(6))dx , then

The value of integral int_(0)^(1)(log(1+x))/(1+x^(2))dx , is

int_(0)^(oo)(x)/((1+x)(1+x^(2))) dx equals to :

Prove that: int_(0)^(oo) (x)/((1+x)(1+x^(2)))dx =(pi)/(4)