Home
Class 12
MATHS
int(0)^(oo)((tan^(-1)x)/((1+x^(2))))dx...

`int_(0)^(oo)((tan^(-1)x)/((1+x^(2))))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{0}^{\infty} \frac{\tan^{-1} x}{1 + x^2} \, dx \] we will use a substitution method. ### Step 1: Substitution Let \( t = \tan^{-1} x \). Then, we differentiate to find \( dt \): \[ dt = \frac{1}{1 + x^2} \, dx \quad \Rightarrow \quad dx = (1 + x^2) \, dt \] ### Step 2: Change of Limits When \( x = 0 \): \[ t = \tan^{-1}(0) = 0 \] When \( x \to \infty \): \[ t = \tan^{-1}(\infty) = \frac{\pi}{2} \] ### Step 3: Rewrite the Integral Substituting \( x = \tan t \) into the integral, we have: \[ I = \int_{0}^{\frac{\pi}{2}} t \, dt \] ### Step 4: Evaluate the Integral Now we can evaluate the integral: \[ I = \int_{0}^{\frac{\pi}{2}} t \, dt = \left[ \frac{t^2}{2} \right]_{0}^{\frac{\pi}{2}} = \frac{(\frac{\pi}{2})^2}{2} - \frac{0^2}{2} = \frac{\pi^2}{8} \] ### Final Answer Thus, the value of the integral is: \[ I = \frac{\pi^2}{8} \] ---
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 1|64 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 1 Part-II|75 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise High Level Problem|26 Videos
  • COMBINATORICS

    RESONANCE ENGLISH|Exercise Exercise-2 (Part-II: Previously Asked Question of RMO)|5 Videos
  • DPP

    RESONANCE ENGLISH|Exercise QUESTION|656 Videos

Similar Questions

Explore conceptually related problems

Evaluate : int_(0)^(1)((tan^(-1)x)^(2))/(1+x^(2))dx

Evaluate : int_(0)^(1)(tan^(-1)x)/(1+x^2)dx

STATEMENT-1 : int_(0)^(oo)(dx)/(1+e^(x))=ln2-1 STATEMENT-2 : int_(0)^(oo)(sin(tan^(-1)))/(1+x^(2))dx=pi STATEMENT-3 : int_(0)^(pi^(2)//4)(sinsqrt(x))/(sqrt(x))dx=1

int_(0)^(1) ( tan^(-1)x)/( 1+x^(2)) dx is equal to

The value of int_(0)^(1) tan^(-1)((2x-1)/(1+x-x^(2)))dx is

int_(0)^( 1)(tan^(-1)x)^(2)/(1+x^2)dx

2) int_(0)^(1)tan^(-1)(1-x+x^(2))dx

I=int_(0)^( pi/4)(tan^(-1)x)^(2)/(1+x^2)dx

Let I_(1)=int_(0)^(oo)(x^(2)sqrtx)/((1+x)^(6))dx,I_(2)=int_(0)^(oo)(xsqrtx)/((1+x)^(6))dx , then

Prove that int_(0)^(oo) (sin^(2)x)/(x^(2))dx=int_(0)^(oo) (sinx)x dx