Home
Class 12
MATHS
int(0)^(1) lnsin(pi/2x) dx...

`int_(0)^(1) lnsin(pi/2x) dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_0^1 \ln(\sin(\frac{\pi}{2} x)) \, dx \), we will follow a systematic approach. ### Step-by-Step Solution: 1. **Define the Integral**: \[ I = \int_0^1 \ln(\sin(\frac{\pi}{2} x)) \, dx \] 2. **Use the Symmetry Property of Integrals**: We can use the property of integrals that states: \[ \int_a^b f(x) \, dx = \int_a^b f(a + b - x) \, dx \] Here, \( a = 0 \) and \( b = 1 \), so we have: \[ I = \int_0^1 \ln(\sin(\frac{\pi}{2} (1 - x))) \, dx \] 3. **Simplify the Argument**: Using the identity \( \sin(\frac{\pi}{2} (1 - x)) = \cos(\frac{\pi}{2} x) \): \[ I = \int_0^1 \ln(\cos(\frac{\pi}{2} x)) \, dx \] 4. **Add the Two Integrals**: Now, we have two expressions for \( I \): \[ I = \int_0^1 \ln(\sin(\frac{\pi}{2} x)) \, dx \] \[ I = \int_0^1 \ln(\cos(\frac{\pi}{2} x)) \, dx \] Adding these two equations: \[ 2I = \int_0^1 \left( \ln(\sin(\frac{\pi}{2} x)) + \ln(\cos(\frac{\pi}{2} x)) \right) \, dx \] 5. **Combine the Logarithms**: Using the property \( \ln(a) + \ln(b) = \ln(ab) \): \[ 2I = \int_0^1 \ln(\sin(\frac{\pi}{2} x) \cos(\frac{\pi}{2} x)) \, dx \] 6. **Use the Double Angle Identity**: Recall that \( \sin(2\theta) = 2 \sin(\theta) \cos(\theta) \): \[ \sin(\frac{\pi}{2} x) \cos(\frac{\pi}{2} x) = \frac{1}{2} \sin(\pi x) \] Thus: \[ 2I = \int_0^1 \ln\left(\frac{1}{2} \sin(\pi x)\right) \, dx \] 7. **Separate the Integral**: This can be separated into two integrals: \[ 2I = \int_0^1 \ln(\sin(\pi x)) \, dx - \int_0^1 \ln(2) \, dx \] The second integral simplifies to: \[ \int_0^1 \ln(2) \, dx = \ln(2) \] Therefore: \[ 2I = \int_0^1 \ln(\sin(\pi x)) \, dx - \ln(2) \] 8. **Evaluate the Integral**: The integral \( \int_0^1 \ln(\sin(\pi x)) \, dx \) is known and equals \( -\ln(2) \): \[ 2I = -\ln(2) - \ln(2) \] \[ 2I = -2\ln(2) \] 9. **Solve for \( I \)**: Dividing both sides by 2: \[ I = -\ln(2) \] ### Final Answer: \[ \int_0^1 \ln(\sin(\frac{\pi}{2} x)) \, dx = -\ln(2) \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 1|64 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 1 Part-II|75 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise High Level Problem|26 Videos
  • COMBINATORICS

    RESONANCE ENGLISH|Exercise Exercise-2 (Part-II: Previously Asked Question of RMO)|5 Videos
  • DPP

    RESONANCE ENGLISH|Exercise QUESTION|656 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi) x sin^(2) x dx

Evaluate int_(0)^(pi//2)lnsin2xdx

int_(0)^(1) sin^(-1) x dx =(pi)/(2) -1

int_(0)^(1) |sin 2pi x|dx id equal to

int_(0)^(1//2) |sin pi x|dx is equal to

Prove that : int_(0)^(1)(sin^(-1)x)/(x) dx = (pi)/(2) log 2

int_(0)^(pi/4) sin 2x dx

Statement-1: int_(0)^(pi//2) x cot x dx=(pi)/(2)log2 Statement-2: int_(0)^(pi//2) log sin x dx=-(pi)/(2)log2

I_(1)=int_(0)^((pi)/2)(sinx-cosx)/(1+sinxcosx)dx, I_(2)=int_(0)^(2pi)cos^(6)dx , I_(3)=int_(-(pi)/2)^((pi)/2)sin^(3)xdx, I_(4)=int_(0)^(1) In (1/x-1)dx . Then

Prove that : int_(0)^(pi) sin^(2m) x. cos^(2m+1) x dx=0