Home
Class 12
MATHS
int(0)^((14pi)/3) |sinx|dx...

`int_(0)^((14pi)/3) |sinx|dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{0}^{\frac{14\pi}{3}} |\sin x| \, dx \), we will first analyze the behavior of the function \( |\sin x| \) over the given interval. ### Step 1: Determine the periodicity and behavior of \( |\sin x| \) The function \( \sin x \) has a period of \( 2\pi \). The absolute value \( |\sin x| \) will repeat every \( 2\pi \) and will have the following behavior: - From \( 0 \) to \( \pi \), \( |\sin x| = \sin x \) (positive). - From \( \pi \) to \( 2\pi \), \( |\sin x| = -\sin x \) (negative). - From \( 2\pi \) to \( 3\pi \), \( |\sin x| = \sin x \) (positive). - From \( 3\pi \) to \( 4\pi \), \( |\sin x| = -\sin x \) (negative). ### Step 2: Break down the integral into segments We need to evaluate the integral from \( 0 \) to \( \frac{14\pi}{3} \). First, we find how many complete periods of \( 2\pi \) fit into \( \frac{14\pi}{3} \): \[ \frac{14\pi/3}{2\pi} = \frac{14}{6} = \frac{7}{3} \] This means \( \frac{14\pi}{3} \) is \( 2\pi \) plus an additional \( \frac{2\pi}{3} \). Thus, we can break the integral into the following parts: \[ \int_{0}^{\frac{14\pi}{3}} |\sin x| \, dx = \int_{0}^{\pi} \sin x \, dx + \int_{\pi}^{2\pi} -\sin x \, dx + \int_{2\pi}^{3\pi} \sin x \, dx + \int_{3\pi}^{4\pi} -\sin x \, dx + \int_{4\pi}^{\frac{14\pi}{3}} \sin x \, dx \] ### Step 3: Calculate each integral 1. **From \( 0 \) to \( \pi \)**: \[ \int_{0}^{\pi} \sin x \, dx = [-\cos x]_{0}^{\pi} = -\cos(\pi) - (-\cos(0)) = 1 + 1 = 2 \] 2. **From \( \pi \) to \( 2\pi \)**: \[ \int_{\pi}^{2\pi} -\sin x \, dx = [\cos x]_{\pi}^{2\pi} = \cos(2\pi) - \cos(\pi) = 1 - (-1) = 2 \] 3. **From \( 2\pi \) to \( 3\pi \)**: \[ \int_{2\pi}^{3\pi} \sin x \, dx = [-\cos x]_{2\pi}^{3\pi} = -\cos(3\pi) - (-\cos(2\pi)) = -(-1) - (-1) = 2 \] 4. **From \( 3\pi \) to \( 4\pi \)**: \[ \int_{3\pi}^{4\pi} -\sin x \, dx = [\cos x]_{3\pi}^{4\pi} = \cos(4\pi) - \cos(3\pi) = 1 - (-1) = 2 \] 5. **From \( 4\pi \) to \( \frac{14\pi}{3} \)**: \[ 4\pi = \frac{12\pi}{3}, \quad \text{and } \frac{14\pi}{3} - 4\pi = \frac{14\pi}{3} - \frac{12\pi}{3} = \frac{2\pi}{3} \] \[ \int_{4\pi}^{\frac{14\pi}{3}} \sin x \, dx = [-\cos x]_{4\pi}^{\frac{14\pi}{3}} = -\cos\left(\frac{14\pi}{3}\right) + \cos(4\pi) \] Since \( \frac{14\pi}{3} = 4\pi + \frac{2\pi}{3} \), we have: \[ \cos\left(\frac{14\pi}{3}\right) = \cos\left(\frac{2\pi}{3}\right) = -\frac{1}{2 \] Thus, \[ -\left(-\frac{1}{2}\right) + 1 = \frac{1}{2} + 1 = \frac{3}{2} \] ### Step 4: Combine all parts Now we sum all the parts: \[ 2 + 2 + 2 + 2 + \frac{3}{2} = 8 + \frac{3}{2} = \frac{16}{2} + \frac{3}{2} = \frac{19}{2} \] ### Final Answer Thus, the value of the integral \( \int_{0}^{\frac{14\pi}{3}} |\sin x| \, dx \) is: \[ \boxed{\frac{19}{2}} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 1|64 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 1 Part-II|75 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise High Level Problem|26 Videos
  • COMBINATORICS

    RESONANCE ENGLISH|Exercise Exercise-2 (Part-II: Previously Asked Question of RMO)|5 Videos
  • DPP

    RESONANCE ENGLISH|Exercise QUESTION|656 Videos

Similar Questions

Explore conceptually related problems

The value of int_(0)^(16pi//3) |sinx|dx is

Evaluate int_(0)^(16pi//3)|sinx|dx .

I_(1)=int_(0)^((pi)/2)Ln (sinx)dx, I_(2)=int_(-pi//4)^(pi//4)Ln(sinx+cosx)dx . Then

Evaluate int_(0)^(pi//2)|sinx-cosx|dx .

int_(0)^(pi) x log sinx\ dx

Evaluate: int_(-pi//2)^(pi//2)|sinx|dx

Evaluate the following: int_0^(pi/2) |cosx-sinx|dx

int_(0)^(pi) x log sinx dx

Prove that int_(0)^(pi//2)log (sinx)dx=int_(0)^(pi//2) log (cosx)dx=-(pi)/(2) log 2 .

I_(1)=int_(0)^((pi)/2)(sinx-cosx)/(1+sinxcosx)dx, I_(2)=int_(0)^(2pi)cos^(6)dx , I_(3)=int_(-(pi)/2)^((pi)/2)sin^(3)xdx, I_(4)=int_(0)^(1) In (1/x-1)dx . Then