Home
Class 12
MATHS
If f(x) = int(0)^(x^(2)) sqrt(cost)dt, ...

If `f(x) = int_(0)^(x^(2)) sqrt(cost)dt`, find `f'(x)`

Text Solution

AI Generated Solution

The correct Answer is:
To find \( f'(x) \) for the function defined as \[ f(x) = \int_{0}^{x^2} \sqrt{\cos t} \, dt, \] we will use the Fundamental Theorem of Calculus, which states that if \( F(x) = \int_{a}^{g(x)} f(t) \, dt \), then \[ F'(x) = f(g(x)) \cdot g'(x). \] ### Step-by-step Solution: 1. **Identify the components**: - Here, \( a = 0 \), \( g(x) = x^2 \), and \( f(t) = \sqrt{\cos t} \). 2. **Differentiate using the Fundamental Theorem of Calculus**: - According to the theorem, we need to find \( f(g(x)) \) and \( g'(x) \). - First, compute \( g'(x) \): \[ g'(x) = \frac{d}{dx}(x^2) = 2x. \] 3. **Evaluate \( f(g(x)) \)**: - We need to evaluate \( f(g(x)) = f(x^2) \): \[ f(x^2) = \sqrt{\cos(x^2)}. \] 4. **Combine the results**: - Now, we can apply the formula: \[ f'(x) = f(g(x)) \cdot g'(x) = \sqrt{\cos(x^2)} \cdot 2x. \] 5. **Final expression for \( f'(x) \)**: - Thus, we have: \[ f'(x) = 2x \sqrt{\cos(x^2)}. \] ### Final Answer: \[ f'(x) = 2x \sqrt{\cos(x^2)}. \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 1|64 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 1 Part-II|75 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise High Level Problem|26 Videos
  • COMBINATORICS

    RESONANCE ENGLISH|Exercise Exercise-2 (Part-II: Previously Asked Question of RMO)|5 Videos
  • DPP

    RESONANCE ENGLISH|Exercise QUESTION|656 Videos

Similar Questions

Explore conceptually related problems

If F(x) = int_(x)^(x^(2))sqrt(tant)dt , then find F'(x) .

(i) If f(x) = int_(0)^(sin^(2)x)sin^(-1)sqrt(t)dt+int_(0)^(cos^(2)x)cos^(-1)sqrt(t) dt, then prove that f'(x) = 0 AA x in R . (ii) Find the value of x for which function f(x) = int_(-1)^(x) t(e^(t)-1)(t-1)(t-2)^(3)(t-3)^(5)dt has a local minimum.

If int_(0)^(x^(2)) sqrt(1+t^(2)) dt, then f'(x)n equals

Let F(x) =int_(a)^(x^(2)) cos sqrt(t)dt Statement-1: F'(x)=cos x Statement-2: If f(x) =int_(a)^(x) phi(t) dt , then f'(x)= phi (x).

If f (x) =e^(x)+ int_(0)^(1) (e^(x)+te^(-x))f (t) dt, find f(x) .

If int_(x^(2))^(x^(4)) sin sqrt(t) dt, f'(x) equals

If f(x)=int_(x)^(x^(2))(dt)/((logt)^(2)),xne0 then f(x) is

If F(x) = int_(x^(2))^(x^(3))(1)/(lnt) dt then find F'(e )

Statement I The function f(x) = int_(0)^(x) sqrt(1+t^(2) dt ) is an odd function and STATEMENT 2 : g(x)=f'(x) is an even function , then f(x) is an odd function.

Let f (x) =(1)/(x ^(2)) int _(4)^(x) (4t ^(2) -2 f '(t) dt, find 9f'(4)