Home
Class 12
MATHS
Find the equation of tangent to the y = ...

Find the equation of tangent to the `y = F(x)` at `x = 1`, where `F(x) = int_(x)^(x^(3))(dt)/(sqrt(1+t^(2)))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the equation of the tangent to the curve \( y = F(x) \) at \( x = 1 \), where \[ F(x) = \int_{x}^{x^3} \frac{dt}{\sqrt{1+t^2}}, \] we will follow these steps: ### Step 1: Calculate \( F(1) \) Substituting \( x = 1 \): \[ F(1) = \int_{1}^{1^3} \frac{dt}{\sqrt{1+t^2}} = \int_{1}^{1} \frac{dt}{\sqrt{1+t^2}}. \] Since the upper and lower limits of the integral are the same, we have: \[ F(1) = 0. \] ### Step 2: Find the derivative \( F'(x) \) To find the derivative \( F'(x) \), we use the Leibniz rule for differentiation under the integral sign: \[ F'(x) = \frac{d}{dx} \left( \int_{x}^{x^3} \frac{dt}{\sqrt{1+t^2}} \right) = \frac{d}{dx} \left( \int_{x^3} \frac{dt}{\sqrt{1+t^2}} - \int_{x} \frac{dt}{\sqrt{1+t^2}} \right). \] Using the Fundamental Theorem of Calculus: \[ F'(x) = \frac{d}{dx} \left( \int_{x^3} \frac{dt}{\sqrt{1+t^2}} \right) - \frac{d}{dx} \left( \int_{x} \frac{dt}{\sqrt{1+t^2}} \right). \] This gives: \[ F'(x) = \frac{d}{dx} \left( \frac{x^3}{\sqrt{1+(x^3)^2}} \cdot \frac{d}{dx}(x^3) \right) - \frac{d}{dx} \left( \frac{x}{\sqrt{1+x^2}} \cdot \frac{d}{dx}(x) \right). \] Calculating these derivatives, we have: \[ F'(x) = \frac{3x^2}{\sqrt{1+x^6}} - \frac{1}{\sqrt{1+x^2}}. \] ### Step 3: Evaluate \( F'(1) \) Now, substituting \( x = 1 \): \[ F'(1) = \frac{3(1^2)}{\sqrt{1+1^6}} - \frac{1}{\sqrt{1+1^2}} = \frac{3}{\sqrt{2}} - \frac{1}{\sqrt{2}} = \frac{3 - 1}{\sqrt{2}} = \frac{2}{\sqrt{2}} = \sqrt{2}. \] ### Step 4: Write the equation of the tangent line The equation of the tangent line at the point \( (x_1, y_1) = (1, 0) \) with slope \( m = F'(1) = \sqrt{2} \) is given by: \[ y - y_1 = m(x - x_1). \] Substituting the values: \[ y - 0 = \sqrt{2}(x - 1). \] This simplifies to: \[ y = \sqrt{2}x - \sqrt{2}. \] ### Final Equation of the Tangent Thus, the equation of the tangent to the curve \( y = F(x) \) at \( x = 1 \) is: \[ y = \sqrt{2}x - \sqrt{2}. \] ---
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 1|64 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 1 Part-II|75 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise High Level Problem|26 Videos
  • COMBINATORICS

    RESONANCE ENGLISH|Exercise Exercise-2 (Part-II: Previously Asked Question of RMO)|5 Videos
  • DPP

    RESONANCE ENGLISH|Exercise QUESTION|656 Videos

Similar Questions

Explore conceptually related problems

If f(x)=int_(2)^(x)(dt)/(1+t^(4)) , then

If F(x) = int_(x)^(x^(2))sqrt(tant)dt , then find F'(x) .

Find the equation of tangent to y=int_(x^2)^(x^3)(dt)/(sqrt(1+t^2))a tx=1.

If f(x) = int_(0)^(x^(2)) sqrt(cost)dt , find f'(x)

The area bounded by y = f(x), x-axis and the line y = 1, where f(x)=1+1/x int_1^xf(t)dt is

If F(x) = int_(x^(2))^(x^(3))(1)/(lnt) dt then find F'(e )

Let f(x) = int_(-2)^(x)|t + 1|dt , then

If y = underset(u(x))overset(v(x))intf(t) dt , let us define (dy)/(dx) in a different manner as (dy)/(dx) = v'(x) f^(2)(v(x)) - u'(x) f^(2)(u(x)) alnd the equation of the tangent at (a,b) as y -b = (dy/dx)_((a,b)) (x-a) If F(x) = underset(1)overset(x)inte^(t^(2)//2)(1-t^(2))dt , then d/(dx) F(x) at x = 1 is

Let F(x) =f(x) +f((1)/(x)),"where" f(x)=int_(1)^(x) (log t)/(1+t) dt Then F (e) equals

The slope of the tangent of the curve y=int_(x)^(x^(2))(cos^(-1)t^(2))dt at x=(1)/(sqrt2) is equal to

RESONANCE ENGLISH-DEFINITE INTEGRATION & ITS APPLICATION -Self practive problem
  1. int(pi)^((3pi)/2)(sin^(4)x+cos^(4)x)dx

    Text Solution

    |

  2. If f(x) = int(0)^(x^(2)) sqrt(cost)dt, find f'(x)

    Text Solution

    |

  3. Find the equation of tangent to the y = F(x) at x = 1, where F(x) = i...

    Text Solution

    |

  4. If int(0)^(x)f(t)dt = x^(2)-int(0)^(x^(2))(f(t))/(t)dt then find f(1).

    Text Solution

    |

  5. If f(x) = int(x)^(x^(2)) t^(2)lnt then find f'(e)

    Text Solution

    |

  6. If y = int(4)^(4x^(2))t^(4)e^(4t)dt, find (d^(2)y)/(dx^(2))

    Text Solution

    |

  7. If y = int(0)^(x^(2))ln(1+t), then find (d^(2)y)/(dx^(2))

    Text Solution

    |

  8. If int(0)^(x^(2)(1+x))f(t)dt=x, then the value of f(2) is.

    Text Solution

    |

  9. Find the value of ∫2x cos (x2 – 5).

    Text Solution

    |

  10. intsin^(11)xdx for x ∈ [0,π/2].

    Text Solution

    |

  11. int(-pi//2)^(pi//2)sin^(5)xcos^(4)xdx

    Text Solution

    |

  12. int(0)^(9) x(a^(2)-x^(2))^(7/2)dx

    Text Solution

    |

  13. int(0)^(2) sqrt(2-x)dx.

    Text Solution

    |

  14. Prove the following : int(0)^(1)e^(-x)cos^(2)xdx lt int(0)^(1)e^(-x^(2...

    Text Solution

    |

  15. Prove the following : 0 lt int(0)^(pi//2)sin^(n+1)xdx lt int(0)^(pi//2...

    Text Solution

    |

  16. Prove the following : e^(-(1)/(e)) lt int(0)^(1)x^(x)dx lt 1

    Text Solution

    |

  17. Prove the following: -1/2lt=int0^1(x^3cosx)/(2+x^2)dx<1/2

    Text Solution

    |

  18. Prove the following : 1 lt int(0)^(pi//2)sqrt(sinx)dx lt sqrt(pi/2)

    Text Solution

    |

  19. Prove the following : 4/pi lt int(pi/4)^(pi/3) (tanx)/(x) lt (3sqrt(3)...

    Text Solution

    |

  20. underset(nrarroo)lim[(1)/(n)+(n^(2))/((n+1)^(3))+(n^(2))/((n+2)^(3))+....

    Text Solution

    |