Home
Class 12
MATHS
If int(0)^(x)f(t)dt = x^(2)-int(0)^(x^(2...

If `int_(0)^(x)f(t)dt = x^(2)-int_(0)^(x^(2))(f(t))/(t)dt` then find `f(1)`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation: \[ \int_{0}^{x} f(t) \, dt = x^2 - \int_{0}^{x^2} \frac{f(t)}{t} \, dt \] ### Step 1: Differentiate both sides with respect to \(x\) Using the Fundamental Theorem of Calculus and the Leibniz rule for differentiation under the integral sign, we differentiate both sides: \[ \frac{d}{dx} \left( \int_{0}^{x} f(t) \, dt \right) = f(x) \] For the right-hand side, we differentiate: \[ \frac{d}{dx} \left( x^2 - \int_{0}^{x^2} \frac{f(t)}{t} \, dt \right) = 2x - \frac{d}{dx} \left( \int_{0}^{x^2} \frac{f(t)}{t} \, dt \right) \] Using the chain rule on the integral: \[ \frac{d}{dx} \left( \int_{0}^{x^2} \frac{f(t)}{t} \, dt \right) = \frac{f(x^2)}{x^2} \cdot 2x \] Putting it all together, we get: \[ f(x) = 2x - \frac{2x f(x^2)}{x^2} \] ### Step 2: Simplify the equation Rearranging the equation gives: \[ f(x) = 2x - \frac{2 f(x^2)}{x} \] ### Step 3: Substitute \(x = 1\) Now we want to find \(f(1)\): \[ f(1) = 2 \cdot 1 - \frac{2 f(1^2)}{1} = 2 - 2 f(1) \] ### Step 4: Solve for \(f(1)\) Rearranging gives: \[ f(1) + 2 f(1) = 2 \] \[ 3 f(1) = 2 \] \[ f(1) = \frac{2}{3} \] Thus, the final answer is: \[ \boxed{\frac{2}{3}} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 1|64 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 1 Part-II|75 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise High Level Problem|26 Videos
  • COMBINATORICS

    RESONANCE ENGLISH|Exercise Exercise-2 (Part-II: Previously Asked Question of RMO)|5 Videos
  • DPP

    RESONANCE ENGLISH|Exercise QUESTION|656 Videos

Similar Questions

Explore conceptually related problems

If int_(0)^(x)f(t)dt=e^(x)-ae^(2x)int_(0)^(1)f(t)e^(-t)dt , then

y=f(x) satisfies the relation int_(2)^(x)f(t)dt=(x^(2))/2+int_(x)^(2)t^(2)f(t)dt The range of y=f(x) is

If int_(0)^(x) f(t)dt=x^(2)+2x-int_(0)^(x) tf(t)dt, x in (0,oo) . Then, f(x) is

If f(x)=x^(2)int_(0)^(1)f(t)dt+2 , then

y=f(x) satisfies the relation int_(2)^(x)f(t)dt=(x^(2))/2+int_(x)^(2)t^(2)f(t)dt The value of int_(-2)^(2)f(x)dx is

If int_(0)^(x)f(t)dt=x^2+int_(x)^(1)\ t^2\ f(t)dt , then f((1)/(2)) is equal to (a) (24)/(25) (b) (4)/(25) (c) (4)/(5) (d) (2)/(5)

Let f(x)=1/x^2 int_4^x (4t^2-2f'(t))dt then find 9f'(4)

y=f(x) satisfies the relation int_(2)^(x)f(t)dt=(x^(2))/2+int_(x)^(2)t^(2)f(t)dt The value of x for which f(x) is increasing is

If int_(0) ^(x) f (t) dt = x + int _(x ) ^(1) t f (t) dt, then the value of f (1) , is

If int_(0)^(x^(2)(1+x))f(t)dt=x , then the value of f(2) is.

RESONANCE ENGLISH-DEFINITE INTEGRATION & ITS APPLICATION -Self practive problem
  1. If f(x) = int(0)^(x^(2)) sqrt(cost)dt, find f'(x)

    Text Solution

    |

  2. Find the equation of tangent to the y = F(x) at x = 1, where F(x) = i...

    Text Solution

    |

  3. If int(0)^(x)f(t)dt = x^(2)-int(0)^(x^(2))(f(t))/(t)dt then find f(1).

    Text Solution

    |

  4. If f(x) = int(x)^(x^(2)) t^(2)lnt then find f'(e)

    Text Solution

    |

  5. If y = int(4)^(4x^(2))t^(4)e^(4t)dt, find (d^(2)y)/(dx^(2))

    Text Solution

    |

  6. If y = int(0)^(x^(2))ln(1+t), then find (d^(2)y)/(dx^(2))

    Text Solution

    |

  7. If int(0)^(x^(2)(1+x))f(t)dt=x, then the value of f(2) is.

    Text Solution

    |

  8. Find the value of ∫2x cos (x2 – 5).

    Text Solution

    |

  9. intsin^(11)xdx for x ∈ [0,π/2].

    Text Solution

    |

  10. int(-pi//2)^(pi//2)sin^(5)xcos^(4)xdx

    Text Solution

    |

  11. int(0)^(9) x(a^(2)-x^(2))^(7/2)dx

    Text Solution

    |

  12. int(0)^(2) sqrt(2-x)dx.

    Text Solution

    |

  13. Prove the following : int(0)^(1)e^(-x)cos^(2)xdx lt int(0)^(1)e^(-x^(2...

    Text Solution

    |

  14. Prove the following : 0 lt int(0)^(pi//2)sin^(n+1)xdx lt int(0)^(pi//2...

    Text Solution

    |

  15. Prove the following : e^(-(1)/(e)) lt int(0)^(1)x^(x)dx lt 1

    Text Solution

    |

  16. Prove the following: -1/2lt=int0^1(x^3cosx)/(2+x^2)dx<1/2

    Text Solution

    |

  17. Prove the following : 1 lt int(0)^(pi//2)sqrt(sinx)dx lt sqrt(pi/2)

    Text Solution

    |

  18. Prove the following : 4/pi lt int(pi/4)^(pi/3) (tanx)/(x) lt (3sqrt(3)...

    Text Solution

    |

  19. underset(nrarroo)lim[(1)/(n)+(n^(2))/((n+1)^(3))+(n^(2))/((n+2)^(3))+....

    Text Solution

    |

  20. lim(nrarroo) [1/(1+n)+(1)/(2+n)+(1)/(3+n)+"....."+(1)/(5n)]

    Text Solution

    |