Home
Class 12
MATHS
If y = int(0)^(x^(2))ln(1+t), then find ...

If `y = int_(0)^(x^(2))ln(1+t)`, then find `(d^(2)y)/(dx^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the second derivative of the function defined by the integral: \[ y = \int_{0}^{x^2} \ln(1+t) \, dt \] ### Step 1: Differentiate \( y \) with respect to \( x \) Using the Fundamental Theorem of Calculus and the chain rule, we differentiate \( y \): \[ \frac{dy}{dx} = \frac{d}{dx} \left( \int_{0}^{x^2} \ln(1+t) \, dt \right) \] According to the theorem, we have: \[ \frac{dy}{dx} = \ln(1 + x^2) \cdot \frac{d}{dx}(x^2) - \ln(1 + 0) \cdot \frac{d}{dx}(0) \] Since \( \ln(1 + 0) = 0 \) and \( \frac{d}{dx}(0) = 0 \), the second term vanishes. Thus, we have: \[ \frac{dy}{dx} = \ln(1 + x^2) \cdot 2x \] ### Step 2: Differentiate \( \frac{dy}{dx} \) to find \( \frac{d^2y}{dx^2} \) Now we need to differentiate \( \frac{dy}{dx} \): \[ \frac{d^2y}{dx^2} = \frac{d}{dx} \left( 2x \ln(1 + x^2) \right) \] Using the product rule, we have: \[ \frac{d^2y}{dx^2} = 2 \ln(1 + x^2) + 2x \cdot \frac{d}{dx}(\ln(1 + x^2)) \] Now we need to differentiate \( \ln(1 + x^2) \): \[ \frac{d}{dx}(\ln(1 + x^2)) = \frac{1}{1 + x^2} \cdot \frac{d}{dx}(1 + x^2) = \frac{2x}{1 + x^2} \] Substituting this back into our expression for \( \frac{d^2y}{dx^2} \): \[ \frac{d^2y}{dx^2} = 2 \ln(1 + x^2) + 2x \cdot \frac{2x}{1 + x^2} \] This simplifies to: \[ \frac{d^2y}{dx^2} = 2 \ln(1 + x^2) + \frac{4x^2}{1 + x^2} \] ### Final Result Thus, the second derivative is: \[ \frac{d^2y}{dx^2} = 2 \ln(1 + x^2) + \frac{4x^2}{1 + x^2} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 1|64 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 1 Part-II|75 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise High Level Problem|26 Videos
  • COMBINATORICS

    RESONANCE ENGLISH|Exercise Exercise-2 (Part-II: Previously Asked Question of RMO)|5 Videos
  • DPP

    RESONANCE ENGLISH|Exercise QUESTION|656 Videos

Similar Questions

Explore conceptually related problems

If y = int_(4)^(4x^(2))t^(4)e^(4t)dt , find (d^(2)y)/(dx^(2))

y= "tan"^(-1)x then find (d^2y)/(dx^(2)) .

If x=int_(0)^(y)(1)/(sqrt(1+4t^(2))) dt, then (d^(2)y)/(dx^(2)) , is

If y =log (1+ 2t^(2)+t^(4)), x= tan^(-1) t find (d^(2)y)/(dx^(2))

If y=(log x)/(x) then (d^(2)y)/(dx^(2))=

If y=log x , find (d^2y)/(dx^2) .

If y = int_(1)^(x) xsqrt(lnt)dt then find the value of (d^(2)y)/(dx^(2)) at x = e

If x=a(t-sint), y=a(1-cost) then find (d^2y)/(dx^2) .

If y=log((x^(2))/(e^(2))) then (d^(2)y)/(dx^(2)) equal to: a) -(1)/(x) b) -(1)/(x^(2)) c) (2)/(x^(2)) d) -(2)/(x^(2))

If y=cos^(-1)x ,find (d^2y)/(dx^2) .

RESONANCE ENGLISH-DEFINITE INTEGRATION & ITS APPLICATION -Self practive problem
  1. If f(x) = int(x)^(x^(2)) t^(2)lnt then find f'(e)

    Text Solution

    |

  2. If y = int(4)^(4x^(2))t^(4)e^(4t)dt, find (d^(2)y)/(dx^(2))

    Text Solution

    |

  3. If y = int(0)^(x^(2))ln(1+t), then find (d^(2)y)/(dx^(2))

    Text Solution

    |

  4. If int(0)^(x^(2)(1+x))f(t)dt=x, then the value of f(2) is.

    Text Solution

    |

  5. Find the value of ∫2x cos (x2 – 5).

    Text Solution

    |

  6. intsin^(11)xdx for x ∈ [0,π/2].

    Text Solution

    |

  7. int(-pi//2)^(pi//2)sin^(5)xcos^(4)xdx

    Text Solution

    |

  8. int(0)^(9) x(a^(2)-x^(2))^(7/2)dx

    Text Solution

    |

  9. int(0)^(2) sqrt(2-x)dx.

    Text Solution

    |

  10. Prove the following : int(0)^(1)e^(-x)cos^(2)xdx lt int(0)^(1)e^(-x^(2...

    Text Solution

    |

  11. Prove the following : 0 lt int(0)^(pi//2)sin^(n+1)xdx lt int(0)^(pi//2...

    Text Solution

    |

  12. Prove the following : e^(-(1)/(e)) lt int(0)^(1)x^(x)dx lt 1

    Text Solution

    |

  13. Prove the following: -1/2lt=int0^1(x^3cosx)/(2+x^2)dx<1/2

    Text Solution

    |

  14. Prove the following : 1 lt int(0)^(pi//2)sqrt(sinx)dx lt sqrt(pi/2)

    Text Solution

    |

  15. Prove the following : 4/pi lt int(pi/4)^(pi/3) (tanx)/(x) lt (3sqrt(3)...

    Text Solution

    |

  16. underset(nrarroo)lim[(1)/(n)+(n^(2))/((n+1)^(3))+(n^(2))/((n+2)^(3))+....

    Text Solution

    |

  17. lim(nrarroo) [1/(1+n)+(1)/(2+n)+(1)/(3+n)+"....."+(1)/(5n)]

    Text Solution

    |

  18. The value of lim(nrarroo) 1/n^2[sin^(3)'(pi)/(4n)+2sin^(3)'(2pi)/(4n)+...

    Text Solution

    |

  19. lim(nrarroo) sum(r=0)^(n-1) (1)/(sqrt(n^(2)-r^(2)))

    Text Solution

    |

  20. T h ev a l u eof(lim)(nvecoo)[t a npi/(2n)tan(2pi)/(2n)dottan(npi)/(2n...

    Text Solution

    |