Home
Class 12
MATHS
Evaluate : (i) int(0)^(1)(3sqrt(x^(2))...

Evaluate :
(i) `int_(0)^(1)(3sqrt(x^(2))-4sqrt(x))/(sqrt(x))dx` , (ii) `int_(0)^(1)x cos(tan^(1)x)dx`

Text Solution

AI Generated Solution

The correct Answer is:
Let's solve the given integrals step by step. ### Part (i): Evaluate the integral \[ \int_{0}^{1} \frac{3\sqrt{x^2} - 4\sqrt{x}}{\sqrt{x}} \, dx \] **Step 1: Simplify the integrand** We can simplify the integrand: \[ \frac{3\sqrt{x^2} - 4\sqrt{x}}{\sqrt{x}} = \frac{3x - 4\sqrt{x}}{\sqrt{x}} = 3\frac{x}{\sqrt{x}} - 4\frac{\sqrt{x}}{\sqrt{x}} = 3\sqrt{x} - 4 \] **Step 2: Rewrite the integral** Now we can rewrite the integral: \[ \int_{0}^{1} (3\sqrt{x} - 4) \, dx \] **Step 3: Integrate term by term** Now we can integrate each term separately: \[ \int_{0}^{1} 3\sqrt{x} \, dx - \int_{0}^{1} 4 \, dx \] The integral of \(3\sqrt{x}\) is: \[ 3 \cdot \frac{2}{3} x^{3/2} = 2x^{3/2} \] And the integral of \(4\) is: \[ 4x \] **Step 4: Evaluate the definite integrals** Now we evaluate from 0 to 1: \[ \left[ 2x^{3/2} \right]_{0}^{1} - \left[ 4x \right]_{0}^{1} \] Calculating these: 1. For \(2x^{3/2}\): - At \(x = 1\): \(2(1)^{3/2} = 2\) - At \(x = 0\): \(2(0)^{3/2} = 0\) Thus, \(2 - 0 = 2\). 2. For \(4x\): - At \(x = 1\): \(4(1) = 4\) - At \(x = 0\): \(4(0) = 0\) Thus, \(4 - 0 = 4\). Putting it all together: \[ 2 - 4 = -2 \] So, the answer for part (i) is: \[ \int_{0}^{1} \frac{3\sqrt{x^2} - 4\sqrt{x}}{\sqrt{x}} \, dx = -2 \] --- ### Part (ii): Evaluate the integral \[ \int_{0}^{1} x \cos(\tan^{-1}(x)) \, dx \] **Step 1: Substitute for \(\cos(\tan^{-1}(x))\)** Let \(\theta = \tan^{-1}(x)\). Then: \[ \tan(\theta) = x \implies \cos(\theta) = \frac{1}{\sqrt{1 + x^2}} \] So, we can rewrite the integral: \[ \int_{0}^{1} x \cos(\tan^{-1}(x)) \, dx = \int_{0}^{1} x \cdot \frac{1}{\sqrt{1 + x^2}} \, dx \] **Step 2: Use substitution** Let \(t = 1 + x^2\), then \(dt = 2x \, dx\) or \(dx = \frac{dt}{2x}\). When \(x = 0\), \(t = 1\) and when \(x = 1\), \(t = 2\). Now substituting: \[ \int_{1}^{2} x \cdot \frac{1}{\sqrt{t}} \cdot \frac{dt}{2x} = \frac{1}{2} \int_{1}^{2} \frac{1}{\sqrt{t}} \, dt \] **Step 3: Integrate** The integral of \(\frac{1}{\sqrt{t}}\) is: \[ 2\sqrt{t} \] Thus: \[ \frac{1}{2} \cdot \left[ 2\sqrt{t} \right]_{1}^{2} = \left[ \sqrt{t} \right]_{1}^{2} \] **Step 4: Evaluate the definite integral** Calculating: \[ \sqrt{2} - \sqrt{1} = \sqrt{2} - 1 \] So, the answer for part (ii) is: \[ \int_{0}^{1} x \cos(\tan^{-1}(x)) \, dx = \sqrt{2} - 1 \] --- ### Summary of Answers: (i) \(-2\) (ii) \(\sqrt{2} - 1\) ---
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 1|64 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 1 Part-II|75 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise High Level Problem|26 Videos
  • COMBINATORICS

    RESONANCE ENGLISH|Exercise Exercise-2 (Part-II: Previously Asked Question of RMO)|5 Videos
  • DPP

    RESONANCE ENGLISH|Exercise QUESTION|656 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(1)(1)/(sqrt(1+x)-sqrt(x))dx

Evaluate: int_0^(1)x(dx)/(sqrt(1-x^(2)))

Evaluate : int_(0)^(9) (1)/(1+sqrt(x))dx

Evaluate : int_(0)^(1)(e^(sqrt(x)))/(sqrt(x))dx

int_(0)^(1) (1)/(sqrt(1-x^(2)))dx

Evaluate: (i) int(e^(sqrt(x))cos(e^(sqrt(x))))/(sqrt(x))\ dx (ii) int(cos^5x)/(sinx)\ dx

Evaluate: (i) int(e^(sqrt(x))cos(e^(sqrt(x))))/(sqrt(x))\ dx (ii) int(cos^5x)/(sinx)\ dx

(9) int_(0)^(1)(dx)/(x+sqrt(1-x^(2)))

Evaluate : int_(0)^(a) (1)/(sqrt(a^(2) -x^(2))) dx

Evaluate : int_(0)^(pi)sqrt(1+sin2x)dx .

RESONANCE ENGLISH-DEFINITE INTEGRATION & ITS APPLICATION -Self practive problem
  1. Find the area bounded by the curves x = |y^(2)-1| and y = x- 5

    Text Solution

    |

  2. Find the area of the region formed by x^2+y^2-6x-4y+12 le 0. y le x an...

    Text Solution

    |

  3. Evaluate : (i) int(0)^(1)(3sqrt(x^(2))-4sqrt(x))/(sqrt(x))dx , (ii) ...

    Text Solution

    |

  4. Evaluate : (i) int(-oo)^(oo) (dx)/(x^(2)+2x+2) , (ii) int(sqrt(2))^(...

    Text Solution

    |

  5. Evaluate : (i) int(0)^(1)sin^(-1)xdx , (ii) int(1)^(2)(lnx)/(x^(2))d...

    Text Solution

    |

  6. Evaluate : (i) underset(0)overset(1)intsin^(-1)xdx , (ii) underset(1...

    Text Solution

    |

  7. Integrate 1/(1+x2) for limit [0,1].

    Text Solution

    |

  8. Evaluate : int( (dx)/(e^(x)+e^(-x)) )

    Text Solution

    |

  9. Let f(x) = ln ((1-sinx)/(1+sinx)), then show that int(a)^(b) f(x)dx =...

    Text Solution

    |

  10. Evaluate : int(0)^(pi)sqrt(1+sin2x)dx .

    Text Solution

    |

  11. Evaluate : int(-1)^(1)e^(x)dx

    Text Solution

    |

  12. Evaluate : int(0)^(pi) (dx)/(5+4cosx)

    Text Solution

    |

  13. Evaluate : int(0)^(pi) (dx)/(5+4cosx) . a) π b) π/2 c) π/3 d) π/4

    Text Solution

    |

  14. Evaluate : (i) int(-1)^(2){2x}dx (where function{*} denotes fraction...

    Text Solution

    |

  15. It is known that f(x) is an odd function and has a period p. Prove tha...

    Text Solution

    |

  16. (i) If f(x) = int(0)^(sin^(2)x)sin^(-1)sqrt(t)dt+int(0)^(cos^(2)x)cos^...

    Text Solution

    |

  17. If y = int(1)^(x) xsqrt(lnt)dt then find the value of (d^(2)y)/(dx^(...

    Text Solution

    |

  18. lim(n to oo)(int(1//(n+1))^(1//n)tan^(-1)(nx)dt)/(int(1//(n+1))^(1//n)...

    Text Solution

    |

  19. Let f be a differentiable function on R and satisfying the integral eq...

    Text Solution

    |

  20. Evaluate : int(0)^(2)x^(3//2)sqrt(2-x)dx.

    Text Solution

    |