Home
Class 12
MATHS
Evaluate : (i) int(-oo)^(oo) (dx)/(x^(...

Evaluate :
(i) `int_(-oo)^(oo) (dx)/(x^(2)+2x+2)` , (ii) `int_(sqrt(2))^(oo)(dx)/(xsqrt(x^(2)-1))`, (iii) `int_(0)^(4)(x^(2))/(1+x)dx`
(iv) `int_(0)^(pi//2) sqrt(costheta)sin^(3)theta`

Text Solution

AI Generated Solution

The correct Answer is:
Let's evaluate the integrals step by step. ### (i) Evaluate \( \int_{-\infty}^{\infty} \frac{dx}{x^2 + 2x + 2} \) 1. **Complete the square**: \[ x^2 + 2x + 2 = (x + 1)^2 + 1 \] So, we rewrite the integral: \[ \int_{-\infty}^{\infty} \frac{dx}{(x + 1)^2 + 1} \] 2. **Use the formula for integration**: The integral of \( \frac{1}{x^2 + a^2} \) is \( \frac{1}{a} \tan^{-1}\left(\frac{x}{a}\right) \). Here, \( a = 1 \), so: \[ \int \frac{dx}{(x + 1)^2 + 1} = \tan^{-1}(x + 1) \] 3. **Evaluate the limits**: \[ \left[ \tan^{-1}(x + 1) \right]_{-\infty}^{\infty} = \tan^{-1}(\infty) - \tan^{-1}(-\infty) = \frac{\pi}{2} - \left(-\frac{\pi}{2}\right) = \pi \] Thus, the result for (i) is: \[ \int_{-\infty}^{\infty} \frac{dx}{x^2 + 2x + 2} = \pi \] ### (ii) Evaluate \( \int_{\sqrt{2}}^{\infty} \frac{dx}{x \sqrt{x^2 - 1}} \) 1. **Use the known integral**: The integral \( \int \frac{dx}{x \sqrt{x^2 - 1}} = \cos^{-1}(x) + C \). 2. **Evaluate the limits**: \[ \left[ \cos^{-1}(x) \right]_{\sqrt{2}}^{\infty} = \cos^{-1}(\infty) - \cos^{-1}(\sqrt{2}) \] Here, \( \cos^{-1}(\infty) = 0 \) and \( \cos^{-1}(\sqrt{2}) = \frac{\pi}{4} \). Thus, the result for (ii) is: \[ \int_{\sqrt{2}}^{\infty} \frac{dx}{x \sqrt{x^2 - 1}} = -\frac{\pi}{4} \] ### (iii) Evaluate \( \int_{0}^{4} \frac{x^2}{1 + x} dx \) 1. **Split the integral**: \[ \int_{0}^{4} \frac{x^2}{1 + x} dx = \int_{0}^{4} \left( x - 1 + \frac{1}{1 + x} \right) dx \] 2. **Integrate each term**: \[ \int_{0}^{4} x \, dx - \int_{0}^{4} 1 \, dx + \int_{0}^{4} \frac{1}{1 + x} \, dx \] - \( \int_{0}^{4} x \, dx = \left[ \frac{x^2}{2} \right]_{0}^{4} = \frac{16}{2} = 8 \) - \( \int_{0}^{4} 1 \, dx = [x]_{0}^{4} = 4 \) - \( \int_{0}^{4} \frac{1}{1 + x} \, dx = \left[ \ln(1 + x) \right]_{0}^{4} = \ln(5) - \ln(1) = \ln(5) \) 3. **Combine the results**: \[ 8 - 4 + \ln(5) = 4 + \ln(5) \] Thus, the result for (iii) is: \[ \int_{0}^{4} \frac{x^2}{1 + x} dx = 4 + \ln(5) \] ### (iv) Evaluate \( \int_{0}^{\frac{\pi}{2}} \sqrt{\cos \theta} \sin^3 \theta \, d\theta \) 1. **Rewrite the integral**: \[ \int_{0}^{\frac{\pi}{2}} \sqrt{\cos \theta} \sin^3 \theta \, d\theta = \int_{0}^{\frac{\pi}{2}} \sqrt{\cos \theta} (1 - \cos^2 \theta) \sin \theta \, d\theta \] 2. **Split the integral**: \[ \int_{0}^{\frac{\pi}{2}} \sqrt{\cos \theta} \sin \theta \, d\theta - \int_{0}^{\frac{\pi}{2}} \sqrt{\cos \theta} \cos^2 \theta \sin \theta \, d\theta \] 3. **Substitute \( u = \cos \theta \)**: - For the first integral, \( du = -\sin \theta \, d\theta \): \[ = -\int_{1}^{0} u^{1/2} \, du = \int_{0}^{1} u^{1/2} \, du = \left[ \frac{u^{3/2}}{3/2} \right]_{0}^{1} = \frac{2}{3} \] - For the second integral: \[ = -\int_{1}^{0} u^{5/2} \, du = \int_{0}^{1} u^{5/2} \, du = \left[ \frac{u^{7/2}}{7/2} \right]_{0}^{1} = \frac{2}{7} \] 4. **Combine the results**: \[ \frac{2}{3} - \frac{2}{7} = \frac{14 - 6}{21} = \frac{8}{21} \] Thus, the result for (iv) is: \[ \int_{0}^{\frac{\pi}{2}} \sqrt{\cos \theta} \sin^3 \theta \, d\theta = \frac{8}{21} \] ### Summary of Results: 1. \( \int_{-\infty}^{\infty} \frac{dx}{x^2 + 2x + 2} = \pi \) 2. \( \int_{\sqrt{2}}^{\infty} \frac{dx}{x \sqrt{x^2 - 1}} = -\frac{\pi}{4} \) 3. \( \int_{0}^{4} \frac{x^2}{1 + x} dx = 4 + \ln(5) \) 4. \( \int_{0}^{\frac{\pi}{2}} \sqrt{\cos \theta} \sin^3 \theta \, d\theta = \frac{8}{21} \)
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 1|64 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 1 Part-II|75 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise High Level Problem|26 Videos
  • COMBINATORICS

    RESONANCE ENGLISH|Exercise Exercise-2 (Part-II: Previously Asked Question of RMO)|5 Videos
  • DPP

    RESONANCE ENGLISH|Exercise QUESTION|656 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//6) sqrt(1-sin 2x) dx

Evaluate : int_(0)^(oo)(cot^(-1)x)^(2)dx

(9) int_(0)^(1)(dx)/(x+sqrt(1-x^(2)))

int_(1)^(2) (x)/(sqrt(1+2x^(2)))dx

int_(0)^(oo) (dx)/([x+sqrt(x^(2)+1)]^(3))dx=

Evaluate : int_(0)^(a) (1)/(sqrt(a^(2) -x^(2))) dx

int_(0)^(sqrt(2)) [x^(2)]dx , is

1. int_(0)^(oo)e^(-x/2)dx

Evaluate: (i) int_0^4 1/(sqrt(x^2+2x+3))dx (ii) int_0^a1/(sqrt(a x-x^2))dx

The value of int_(0)^(oo) (logx)/(1+x^(2))dx , is

RESONANCE ENGLISH-DEFINITE INTEGRATION & ITS APPLICATION -Self practive problem
  1. Find the area of the region formed by x^2+y^2-6x-4y+12 le 0. y le x an...

    Text Solution

    |

  2. Evaluate : (i) int(0)^(1)(3sqrt(x^(2))-4sqrt(x))/(sqrt(x))dx , (ii) ...

    Text Solution

    |

  3. Evaluate : (i) int(-oo)^(oo) (dx)/(x^(2)+2x+2) , (ii) int(sqrt(2))^(...

    Text Solution

    |

  4. Evaluate : (i) int(0)^(1)sin^(-1)xdx , (ii) int(1)^(2)(lnx)/(x^(2))d...

    Text Solution

    |

  5. Evaluate : (i) underset(0)overset(1)intsin^(-1)xdx , (ii) underset(1...

    Text Solution

    |

  6. Integrate 1/(1+x2) for limit [0,1].

    Text Solution

    |

  7. Evaluate : int( (dx)/(e^(x)+e^(-x)) )

    Text Solution

    |

  8. Let f(x) = ln ((1-sinx)/(1+sinx)), then show that int(a)^(b) f(x)dx =...

    Text Solution

    |

  9. Evaluate : int(0)^(pi)sqrt(1+sin2x)dx .

    Text Solution

    |

  10. Evaluate : int(-1)^(1)e^(x)dx

    Text Solution

    |

  11. Evaluate : int(0)^(pi) (dx)/(5+4cosx)

    Text Solution

    |

  12. Evaluate : int(0)^(pi) (dx)/(5+4cosx) . a) π b) π/2 c) π/3 d) π/4

    Text Solution

    |

  13. Evaluate : (i) int(-1)^(2){2x}dx (where function{*} denotes fraction...

    Text Solution

    |

  14. It is known that f(x) is an odd function and has a period p. Prove tha...

    Text Solution

    |

  15. (i) If f(x) = int(0)^(sin^(2)x)sin^(-1)sqrt(t)dt+int(0)^(cos^(2)x)cos^...

    Text Solution

    |

  16. If y = int(1)^(x) xsqrt(lnt)dt then find the value of (d^(2)y)/(dx^(...

    Text Solution

    |

  17. lim(n to oo)(int(1//(n+1))^(1//n)tan^(-1)(nx)dt)/(int(1//(n+1))^(1//n)...

    Text Solution

    |

  18. Let f be a differentiable function on R and satisfying the integral eq...

    Text Solution

    |

  19. Evaluate : int(0)^(2)x^(3//2)sqrt(2-x)dx.

    Text Solution

    |

  20. Prove the following inequalities : (i) (sqrt(3))/(8) lt int(pi//4)^(...

    Text Solution

    |