Home
Class 12
MATHS
Let f(x) = ln ((1-sinx)/(1+sinx)), then...

Let `f(x) = ln ((1-sinx)/(1+sinx))`, then show that `int_(a)^(b) f(x)dx = int_(b)^(a) ln((1+sinx)/(1-sinx))dx`.

Text Solution

AI Generated Solution

The correct Answer is:
To prove that \[ \int_{a}^{b} f(x) \, dx = \int_{b}^{a} \ln\left(\frac{1+\sin x}{1-\sin x}\right) \, dx \] where \( f(x) = \ln\left(\frac{1 - \sin x}{1 + \sin x}\right) \), we will follow these steps: ### Step 1: Write the integral of \( f(x) \) We start with the left-hand side: \[ \int_{a}^{b} f(x) \, dx = \int_{a}^{b} \ln\left(\frac{1 - \sin x}{1 + \sin x}\right) \, dx \] ### Step 2: Use the property of definite integrals Using the property of definite integrals, we know that: \[ \int_{a}^{b} f(x) \, dx = -\int_{b}^{a} f(x) \, dx \] Thus, we can write: \[ \int_{a}^{b} \ln\left(\frac{1 - \sin x}{1 + \sin x}\right) \, dx = -\int_{b}^{a} \ln\left(\frac{1 - \sin x}{1 + \sin x}\right) \, dx \] ### Step 3: Change the limits of integration When we change the limits of integration, we can express this as: \[ -\int_{b}^{a} \ln\left(\frac{1 - \sin x}{1 + \sin x}\right) \, dx = \int_{a}^{b} \ln\left(\frac{1 + \sin x}{1 - \sin x}\right) \, dx \] ### Step 4: Apply the logarithmic property Using the property of logarithms, we have: \[ -\ln\left(\frac{1 - \sin x}{1 + \sin x}\right) = \ln\left(\frac{1 + \sin x}{1 - \sin x}\right) \] ### Step 5: Combine the results Thus, we can conclude: \[ \int_{a}^{b} \ln\left(\frac{1 - \sin x}{1 + \sin x}\right) \, dx = \int_{b}^{a} \ln\left(\frac{1 + \sin x}{1 - \sin x}\right) \, dx \] This shows that: \[ \int_{a}^{b} f(x) \, dx = \int_{b}^{a} \ln\left(\frac{1 + \sin x}{1 - \sin x}\right) \, dx \] ### Conclusion Thus, we have proved the required identity. ---
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 1|64 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 1 Part-II|75 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise High Level Problem|26 Videos
  • COMBINATORICS

    RESONANCE ENGLISH|Exercise Exercise-2 (Part-II: Previously Asked Question of RMO)|5 Videos
  • DPP

    RESONANCE ENGLISH|Exercise QUESTION|656 Videos

Similar Questions

Explore conceptually related problems

int(sinx)/(1+sin x) dx

int(x-sinx)/(1-cosx)dx

int(x-sinx)/(1-cosx)dx

int(sinx)/(sqrt(1+sinx))dx

int(cos x)/(1+sinx) dx

int1/(1-sinx/2)\ dx

int((1+cosx))/(x+sinx)dx

int_(0)^(pi/2) (sinx)/(1+cos^(2)x)dx

int_(0)^(pi) x log sinx dx

The function f(x)=log((1+sinx)/(1-sinx)) is

RESONANCE ENGLISH-DEFINITE INTEGRATION & ITS APPLICATION -Self practive problem
  1. Integrate 1/(1+x2) for limit [0,1].

    Text Solution

    |

  2. Evaluate : int( (dx)/(e^(x)+e^(-x)) )

    Text Solution

    |

  3. Let f(x) = ln ((1-sinx)/(1+sinx)), then show that int(a)^(b) f(x)dx =...

    Text Solution

    |

  4. Evaluate : int(0)^(pi)sqrt(1+sin2x)dx .

    Text Solution

    |

  5. Evaluate : int(-1)^(1)e^(x)dx

    Text Solution

    |

  6. Evaluate : int(0)^(pi) (dx)/(5+4cosx)

    Text Solution

    |

  7. Evaluate : int(0)^(pi) (dx)/(5+4cosx) . a) π b) π/2 c) π/3 d) π/4

    Text Solution

    |

  8. Evaluate : (i) int(-1)^(2){2x}dx (where function{*} denotes fraction...

    Text Solution

    |

  9. It is known that f(x) is an odd function and has a period p. Prove tha...

    Text Solution

    |

  10. (i) If f(x) = int(0)^(sin^(2)x)sin^(-1)sqrt(t)dt+int(0)^(cos^(2)x)cos^...

    Text Solution

    |

  11. If y = int(1)^(x) xsqrt(lnt)dt then find the value of (d^(2)y)/(dx^(...

    Text Solution

    |

  12. lim(n to oo)(int(1//(n+1))^(1//n)tan^(-1)(nx)dt)/(int(1//(n+1))^(1//n)...

    Text Solution

    |

  13. Let f be a differentiable function on R and satisfying the integral eq...

    Text Solution

    |

  14. Evaluate : int(0)^(2)x^(3//2)sqrt(2-x)dx.

    Text Solution

    |

  15. Prove the following inequalities : (i) (sqrt(3))/(8) lt int(pi//4)^(...

    Text Solution

    |

  16. Show that (i) (1)/(10sqrt(2))lt underset(0)overset(1)int(x^(9))/(sq...

    Text Solution

    |

  17. If In=int0^(pi//4)tan^("n")x dx , prove that In+I(n-2)=1/(n+1)dot

    Text Solution

    |

  18. Find the area enclosed betweent the curve y = x^(2)+3, y = 0, x = -...

    Text Solution

    |

  19. int sinx dx

    Text Solution

    |

  20. Find the area of the region bounded by the curve y^2=2y-x and the y-ax...

    Text Solution

    |