Home
Class 12
MATHS
Evaluate : int(0)^(pi)sqrt(1+sin2x)dx...

Evaluate :
`int_(0)^(pi)sqrt(1+sin2x)dx` .

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( I = \int_{0}^{\pi} \sqrt{1 + \sin 2x} \, dx \), we can follow these steps: ### Step 1: Rewrite the integrand We start by rewriting the expression under the square root. We know that: \[ \sin 2x = 2 \sin x \cos x \] Thus, we can express the integral as: \[ I = \int_{0}^{\pi} \sqrt{1 + 2 \sin x \cos x} \, dx \] ### Step 2: Use the identity for squares Recognizing that \( 1 + 2 \sin x \cos x \) can be rewritten, we note that: \[ 1 + 2 \sin x \cos x = (\sin x + \cos x)^2 \] So, we can rewrite the integral: \[ I = \int_{0}^{\pi} \sqrt{(\sin x + \cos x)^2} \, dx \] Since the square root and square cancel out, we have: \[ I = \int_{0}^{\pi} |\sin x + \cos x| \, dx \] ### Step 3: Determine the sign of the integrand Next, we need to determine where \( \sin x + \cos x \) is positive or negative over the interval \( [0, \pi] \). The expression \( \sin x + \cos x \) can be rewritten using the angle addition formula: \[ \sin x + \cos x = \sqrt{2} \sin\left(x + \frac{\pi}{4}\right) \] The maximum value occurs at \( x = \frac{\pi}{4} \) and the minimum occurs at \( x = \frac{5\pi}{4} \). However, since we are only integrating from \( 0 \) to \( \pi \), we need to check the sign in this interval. - At \( x = 0 \): \( \sin 0 + \cos 0 = 1 \) (positive) - At \( x = \frac{\pi}{2} \): \( \sin \frac{\pi}{2} + \cos \frac{\pi}{2} = 1 \) (positive) - At \( x = \pi \): \( \sin \pi + \cos \pi = -1 \) (negative) Thus, \( \sin x + \cos x \) is positive on \( [0, \frac{\pi}{2}] \) and negative on \( [\frac{\pi}{2}, \pi] \). ### Step 4: Split the integral We can split the integral into two parts: \[ I = \int_{0}^{\frac{\pi}{2}} (\sin x + \cos x) \, dx + \int_{\frac{\pi}{2}}^{\pi} -(\sin x + \cos x) \, dx \] ### Step 5: Evaluate the first integral Calculating the first integral: \[ \int_{0}^{\frac{\pi}{2}} (\sin x + \cos x) \, dx = \left[-\cos x + \sin x\right]_{0}^{\frac{\pi}{2}} = \left[-\cos\frac{\pi}{2} + \sin\frac{\pi}{2}\right] - \left[-\cos 0 + \sin 0\right] \] This simplifies to: \[ [0 + 1] - [-1 + 0] = 1 + 1 = 2 \] ### Step 6: Evaluate the second integral Now for the second integral: \[ \int_{\frac{\pi}{2}}^{\pi} -(\sin x + \cos x) \, dx = -\left[\int_{\frac{\pi}{2}}^{\pi} (\sin x + \cos x) \, dx\right] \] Calculating this: \[ \int_{\frac{\pi}{2}}^{\pi} (\sin x + \cos x) \, dx = \left[-\cos x + \sin x\right]_{\frac{\pi}{2}}^{\pi} = \left[-\cos \pi + \sin \pi\right] - \left[-\cos \frac{\pi}{2} + \sin \frac{\pi}{2}\right] \] This simplifies to: \[ [1 + 0] - [0 + 1] = 1 - 1 = 0 \] Thus, the second integral evaluates to \( 0 \). ### Step 7: Combine the results Combining both parts, we find: \[ I = 2 + 0 = 2 \] ### Final Answer The value of the integral is: \[ \boxed{2} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 1|64 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 1 Part-II|75 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise High Level Problem|26 Videos
  • COMBINATORICS

    RESONANCE ENGLISH|Exercise Exercise-2 (Part-II: Previously Asked Question of RMO)|5 Videos
  • DPP

    RESONANCE ENGLISH|Exercise QUESTION|656 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//6) sqrt(1-sin 2x) dx

Evaluate: int_0^(pi//4)sqrt(1-sin^2x)dx

Evaluate : int_0^(pi/2)sqrt(1+sinx)dx

Evaluate: int_0^(pi//4)sqrt(1+sin2x)dx (ii) int_0^(pi//4)sqrt(1-sin2x)dx

Evaluate: int_(pi//4)^(pi//2)sqrt(1-sin2x)dx

int_(0)^(pi//2) sqrt(1- cos 2x) dx

int_(0)^(pi//2) sqrt(1- cos 2x) dx

Evaluate : int_(0)^( pi//2) (sqrt( sec x) )/( sqrt(sec x ) + sqrt( cosec x) ) dx

Evaluate int _(0)^(pi//2) sqrt(1+ cos x dx)

Evaluate : int_(0)^(pi//2) sin x dx

RESONANCE ENGLISH-DEFINITE INTEGRATION & ITS APPLICATION -Self practive problem
  1. Evaluate : int( (dx)/(e^(x)+e^(-x)) )

    Text Solution

    |

  2. Let f(x) = ln ((1-sinx)/(1+sinx)), then show that int(a)^(b) f(x)dx =...

    Text Solution

    |

  3. Evaluate : int(0)^(pi)sqrt(1+sin2x)dx .

    Text Solution

    |

  4. Evaluate : int(-1)^(1)e^(x)dx

    Text Solution

    |

  5. Evaluate : int(0)^(pi) (dx)/(5+4cosx)

    Text Solution

    |

  6. Evaluate : int(0)^(pi) (dx)/(5+4cosx) . a) π b) π/2 c) π/3 d) π/4

    Text Solution

    |

  7. Evaluate : (i) int(-1)^(2){2x}dx (where function{*} denotes fraction...

    Text Solution

    |

  8. It is known that f(x) is an odd function and has a period p. Prove tha...

    Text Solution

    |

  9. (i) If f(x) = int(0)^(sin^(2)x)sin^(-1)sqrt(t)dt+int(0)^(cos^(2)x)cos^...

    Text Solution

    |

  10. If y = int(1)^(x) xsqrt(lnt)dt then find the value of (d^(2)y)/(dx^(...

    Text Solution

    |

  11. lim(n to oo)(int(1//(n+1))^(1//n)tan^(-1)(nx)dt)/(int(1//(n+1))^(1//n)...

    Text Solution

    |

  12. Let f be a differentiable function on R and satisfying the integral eq...

    Text Solution

    |

  13. Evaluate : int(0)^(2)x^(3//2)sqrt(2-x)dx.

    Text Solution

    |

  14. Prove the following inequalities : (i) (sqrt(3))/(8) lt int(pi//4)^(...

    Text Solution

    |

  15. Show that (i) (1)/(10sqrt(2))lt underset(0)overset(1)int(x^(9))/(sq...

    Text Solution

    |

  16. If In=int0^(pi//4)tan^("n")x dx , prove that In+I(n-2)=1/(n+1)dot

    Text Solution

    |

  17. Find the area enclosed betweent the curve y = x^(2)+3, y = 0, x = -...

    Text Solution

    |

  18. int sinx dx

    Text Solution

    |

  19. Find the area of the region bounded by the curve y^2=2y-x and the y-ax...

    Text Solution

    |

  20. Find the area bounded by the y-axis and the curve x = e^(y) sin piy b...

    Text Solution

    |