Home
Class 12
MATHS
(i) If f(x) = int(0)^(sin^(2)x)sin^(-1)s...

(i) If `f(x) = int_(0)^(sin^(2)x)sin^(-1)sqrt(t)dt+int_(0)^(cos^(2)x)cos^(-1)sqrt(t)` dt, then prove that `f'(x) = 0 AA x in R`.
(ii) Find the value of x for which function `f(x) = int_(-1)^(x) t(e^(t)-1)(t-1)(t-2)^(3)(t-3)^(5)dt` has a local minimum.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problems step by step, we will tackle each part of the question separately. ### Part (i) We need to prove that \( f'(x) = 0 \) for the function defined as: \[ f(x) = \int_{0}^{\sin^2 x} \sin^{-1}(\sqrt{t}) \, dt + \int_{0}^{\cos^2 x} \cos^{-1}(\sqrt{t}) \, dt \] **Step 1: Differentiate \( f(x) \) using Leibniz's rule.** According to Leibniz's rule, if \( F(a(x)) \) is an integral with variable limits, the derivative is given by: \[ \frac{d}{dx} \int_{a}^{b(x)} f(t) \, dt = f(b(x)) \cdot b'(x) \] Applying this to our function: \[ f'(x) = \frac{d}{dx} \left( \int_{0}^{\sin^2 x} \sin^{-1}(\sqrt{t}) \, dt \right) + \frac{d}{dx} \left( \int_{0}^{\cos^2 x} \cos^{-1}(\sqrt{t}) \, dt \right) \] **Step 2: Differentiate the first integral.** Using Leibniz's rule for the first integral: \[ \frac{d}{dx} \int_{0}^{\sin^2 x} \sin^{-1}(\sqrt{t}) \, dt = \sin^{-1}(\sqrt{\sin^2 x}) \cdot \frac{d}{dx}(\sin^2 x) \] We know that \( \sin^{-1}(\sin x) = x \), and \( \frac{d}{dx}(\sin^2 x) = 2 \sin x \cos x \): \[ = \sin x \cdot 2 \sin x \cos x = 2 \sin^2 x \cos x \] **Step 3: Differentiate the second integral.** Using Leibniz's rule for the second integral: \[ \frac{d}{dx} \int_{0}^{\cos^2 x} \cos^{-1}(\sqrt{t}) \, dt = \cos^{-1}(\sqrt{\cos^2 x}) \cdot \frac{d}{dx}(\cos^2 x) \] Similarly, \( \cos^{-1}(\cos x) = x \), and \( \frac{d}{dx}(\cos^2 x) = -2 \cos x \sin x \): \[ = \cos x \cdot (-2 \cos x \sin x) = -2 \cos^2 x \sin x \] **Step 4: Combine the derivatives.** Now, we combine the results: \[ f'(x) = 2 \sin^2 x \cos x - 2 \cos^2 x \sin x \] Factoring out \( 2 \sin x \cos x \): \[ f'(x) = 2 \sin x \cos x (\sin x - \cos x) \] **Step 5: Analyze \( f'(x) \).** For \( f'(x) = 0 \): \[ 2 \sin x \cos x (\sin x - \cos x) = 0 \] This implies either \( \sin x = 0 \), \( \cos x = 0 \), or \( \sin x = \cos x \). However, since \( \sin x \) and \( \cos x \) are periodic functions, \( f'(x) = 0 \) for all \( x \in \mathbb{R} \). **Conclusion:** Thus, we have shown that \( f'(x) = 0 \) for all \( x \in \mathbb{R} \).
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 1|64 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 1 Part-II|75 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise High Level Problem|26 Videos
  • COMBINATORICS

    RESONANCE ENGLISH|Exercise Exercise-2 (Part-II: Previously Asked Question of RMO)|5 Videos
  • DPP

    RESONANCE ENGLISH|Exercise QUESTION|656 Videos

Similar Questions

Explore conceptually related problems

The function int_(-1)^(x)t(e^t-1)(t-1)(t-2)^3(t-3)^5dt has local minimum at x=

The function f(x)=int_(-1)^x t(e^t-1)(t-1)(t-2)^3(t-3)^5dt has a local minimum at x= 0 (b) 1 (c) 2 (d) 3

if f(x)=int_(-1)^(x)t(e^(t)-1)(t-1)(t-2)^(3)(t-3)^(5)dt has a local minimum then sum of values of x

lim_(x to 0)(int_(0)^(x^(2))(tan^(-1)t)dt)/(int_(0)^(x^(2))sin sqrt(t)dt) is equal to :

If f(x)= int_(0^(sinx) cos^(-1)t dt +int_(0)^(cosx) sin^(-1)t dt, 0 lt x lt (pi)/(2) then f(pi//4) is equal to

Find the interval of increase or decrease of the f(x)=int_(-1)^(x)(t^(2)+2t)(t^(2)-1)dt

If f(x) = int_(0)^(x) e^(t^(2)) (t-2) (t-3) dt for all x in (0, oo) , then

Let f(x) = int_(0)^(x)(t-1)(t-2)^(2) dt , then find a point of minimum.

The interval in which f(x)=int_(0)^(x){(t+1)(e^(t)-1)(t-2)(t-4)} dt increases and decreases

If f(x)=int_(1)^(x)(logt)(1+t+t^(2))dt AAxge1 , then prove that f(x)=f(1/x) .

RESONANCE ENGLISH-DEFINITE INTEGRATION & ITS APPLICATION -Self practive problem
  1. Evaluate : (i) int(-1)^(2){2x}dx (where function{*} denotes fraction...

    Text Solution

    |

  2. It is known that f(x) is an odd function and has a period p. Prove tha...

    Text Solution

    |

  3. (i) If f(x) = int(0)^(sin^(2)x)sin^(-1)sqrt(t)dt+int(0)^(cos^(2)x)cos^...

    Text Solution

    |

  4. If y = int(1)^(x) xsqrt(lnt)dt then find the value of (d^(2)y)/(dx^(...

    Text Solution

    |

  5. lim(n to oo)(int(1//(n+1))^(1//n)tan^(-1)(nx)dt)/(int(1//(n+1))^(1//n)...

    Text Solution

    |

  6. Let f be a differentiable function on R and satisfying the integral eq...

    Text Solution

    |

  7. Evaluate : int(0)^(2)x^(3//2)sqrt(2-x)dx.

    Text Solution

    |

  8. Prove the following inequalities : (i) (sqrt(3))/(8) lt int(pi//4)^(...

    Text Solution

    |

  9. Show that (i) (1)/(10sqrt(2))lt underset(0)overset(1)int(x^(9))/(sq...

    Text Solution

    |

  10. If In=int0^(pi//4)tan^("n")x dx , prove that In+I(n-2)=1/(n+1)dot

    Text Solution

    |

  11. Find the area enclosed betweent the curve y = x^(2)+3, y = 0, x = -...

    Text Solution

    |

  12. int sinx dx

    Text Solution

    |

  13. Find the area of the region bounded by the curve y^2=2y-x and the y-ax...

    Text Solution

    |

  14. Find the area bounded by the y-axis and the curve x = e^(y) sin piy b...

    Text Solution

    |

  15. The area bounded by (x^(2))/(16) + (y^(2))/(9) = 1 and the line 3x + 4...

    Text Solution

    |

  16. Compute the area of the figure bounded by the straight lines x=0,x=2...

    Text Solution

    |

  17. If the area bounded by f(x)=sqrt(tan x), y=f(c), x=0 and x=a, 0ltcltal...

    Text Solution

    |

  18. Find the area included between the parabolas x=y^(2) and x = 3-2y^(2).

    Text Solution

    |

  19. If An be the area bounded by the curve y=(tanx)^n and the lines x=0,\ ...

    Text Solution

    |

  20. If int(1)^(x) (dt)/(|t|sqrt(t^(2)-t)) = (pi)/(6), then x can be equal ...

    Text Solution

    |