Home
Class 12
MATHS
If y = int(1)^(x) xsqrt(lnt)dt then fi...

If `y = int_(1)^(x) xsqrt(lnt)dt`
then find the value of `(d^(2)y)/(dx^(2))` at `x = e`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the second derivative of the function \( y = \int_{1}^{x} x \sqrt{\ln t} \, dt \) at \( x = e \). ### Step-by-Step Solution: 1. **Define the function:** \[ y = \int_{1}^{x} x \sqrt{\ln t} \, dt \] 2. **Differentiate \( y \) with respect to \( x \):** We will use the product rule and Leibniz's rule for differentiation under the integral sign. Let \( u = x \) and \( v = \int_{1}^{x} \sqrt{\ln t} \, dt \). \[ \frac{dy}{dx} = \frac{d}{dx}(x) \cdot \int_{1}^{x} \sqrt{\ln t} \, dt + x \cdot \frac{d}{dx}\left(\int_{1}^{x} \sqrt{\ln t} \, dt\right) \] Using Leibniz's rule: \[ \frac{d}{dx}\left(\int_{1}^{x} \sqrt{\ln t} \, dt\right) = \sqrt{\ln x} \] Thus, we have: \[ \frac{dy}{dx} = \int_{1}^{x} \sqrt{\ln t} \, dt + x \cdot \sqrt{\ln x} \] 3. **Differentiate \( \frac{dy}{dx} \) to find \( \frac{d^2y}{dx^2} \):** Now we differentiate \( \frac{dy}{dx} \): \[ \frac{d^2y}{dx^2} = \frac{d}{dx}\left(\int_{1}^{x} \sqrt{\ln t} \, dt\right) + \frac{d}{dx}(x \cdot \sqrt{\ln x}) \] The first term is: \[ \frac{d}{dx}\left(\int_{1}^{x} \sqrt{\ln t} \, dt\right) = \sqrt{\ln x} \] For the second term, we apply the product rule: \[ \frac{d}{dx}(x \cdot \sqrt{\ln x}) = \sqrt{\ln x} + x \cdot \frac{1}{2\sqrt{\ln x}} \cdot \frac{1}{x} = \sqrt{\ln x} + \frac{1}{2\sqrt{\ln x}} \] Therefore, combining both parts: \[ \frac{d^2y}{dx^2} = \sqrt{\ln x} + \sqrt{\ln x} + \frac{1}{2\sqrt{\ln x}} = 2\sqrt{\ln x} + \frac{1}{2\sqrt{\ln x}} \] 4. **Evaluate \( \frac{d^2y}{dx^2} \) at \( x = e \):** We know that \( \ln e = 1 \): \[ \frac{d^2y}{dx^2}\bigg|_{x=e} = 2\sqrt{\ln e} + \frac{1}{2\sqrt{\ln e}} = 2\sqrt{1} + \frac{1}{2\sqrt{1}} = 2 + \frac{1}{2} = 2 + 0.5 = \frac{5}{2} \] ### Final Answer: \[ \frac{d^2y}{dx^2}\bigg|_{x=e} = \frac{5}{2} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 1|64 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 1 Part-II|75 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise High Level Problem|26 Videos
  • COMBINATORICS

    RESONANCE ENGLISH|Exercise Exercise-2 (Part-II: Previously Asked Question of RMO)|5 Videos
  • DPP

    RESONANCE ENGLISH|Exercise QUESTION|656 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(2) xsqrt(2-x)dx

If e^y+xy=e then the value of (d^2y)/(dx^2) for x=0 is

If f(x) = int_(x)^(x^(2)) t^(2)lnt then find f'(e)

If F(x) = int_(x^(2))^(x^(3))(1)/(lnt) dt then find F'(e )

y= "tan"^(-1)x then find (d^2y)/(dx^(2)) .

y=e^(x)"sin"5x then find (d^2y)/(dx^(2)) .

y=x*cos x then find (d^2y)/(dx^(2)) .

If y = int_(0)^(x^(2))ln(1+t) , then find (d^(2)y)/(dx^(2))

If x=cost+logtan(t/2),\ \ y=sint , then find the value of (d^2y)/(dt^2) and (d^2y)/(dx^2) at t=pi/4 .

If x=cos t + (log tant)/2, y=sin t, then find the value of (d^2y)/(dt^2) and (d^2y)/(dx^2)  at t =pi/4.

RESONANCE ENGLISH-DEFINITE INTEGRATION & ITS APPLICATION -Self practive problem
  1. It is known that f(x) is an odd function and has a period p. Prove tha...

    Text Solution

    |

  2. (i) If f(x) = int(0)^(sin^(2)x)sin^(-1)sqrt(t)dt+int(0)^(cos^(2)x)cos^...

    Text Solution

    |

  3. If y = int(1)^(x) xsqrt(lnt)dt then find the value of (d^(2)y)/(dx^(...

    Text Solution

    |

  4. lim(n to oo)(int(1//(n+1))^(1//n)tan^(-1)(nx)dt)/(int(1//(n+1))^(1//n)...

    Text Solution

    |

  5. Let f be a differentiable function on R and satisfying the integral eq...

    Text Solution

    |

  6. Evaluate : int(0)^(2)x^(3//2)sqrt(2-x)dx.

    Text Solution

    |

  7. Prove the following inequalities : (i) (sqrt(3))/(8) lt int(pi//4)^(...

    Text Solution

    |

  8. Show that (i) (1)/(10sqrt(2))lt underset(0)overset(1)int(x^(9))/(sq...

    Text Solution

    |

  9. If In=int0^(pi//4)tan^("n")x dx , prove that In+I(n-2)=1/(n+1)dot

    Text Solution

    |

  10. Find the area enclosed betweent the curve y = x^(2)+3, y = 0, x = -...

    Text Solution

    |

  11. int sinx dx

    Text Solution

    |

  12. Find the area of the region bounded by the curve y^2=2y-x and the y-ax...

    Text Solution

    |

  13. Find the area bounded by the y-axis and the curve x = e^(y) sin piy b...

    Text Solution

    |

  14. The area bounded by (x^(2))/(16) + (y^(2))/(9) = 1 and the line 3x + 4...

    Text Solution

    |

  15. Compute the area of the figure bounded by the straight lines x=0,x=2...

    Text Solution

    |

  16. If the area bounded by f(x)=sqrt(tan x), y=f(c), x=0 and x=a, 0ltcltal...

    Text Solution

    |

  17. Find the area included between the parabolas x=y^(2) and x = 3-2y^(2).

    Text Solution

    |

  18. If An be the area bounded by the curve y=(tanx)^n and the lines x=0,\ ...

    Text Solution

    |

  19. If int(1)^(x) (dt)/(|t|sqrt(t^(2)-t)) = (pi)/(6), then x can be equal ...

    Text Solution

    |

  20. The value of the integral int(0)^(1)(dx)/(x^(2)+2x cos alpha +1),0ltal...

    Text Solution

    |