Home
Class 12
MATHS
lim(n to oo)(int(1//(n+1))^(1//n)tan^(-1...

`lim_(n to oo)(int_(1//(n+1))^(1//n)tan^(-1)(nx)dt)/(int_(1//(n+1))^(1//n)sin^(-1)(nx)dx)` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \[ \lim_{n \to \infty} \frac{\int_{\frac{1}{n+1}}^{\frac{1}{n}} \tan^{-1}(nx) \, dt}{\int_{\frac{1}{n+1}}^{\frac{1}{n}} \sin^{-1}(nx) \, dx} \] we will follow these steps: ### Step 1: Change of Variables Let \( nx = t \). Then, \( dx = \frac{dt}{n} \). The limits of integration change as follows: - When \( x = \frac{1}{n+1} \), \( t = \frac{n}{n+1} \). - When \( x = \frac{1}{n} \), \( t = 1 \). Thus, we can rewrite the integrals: \[ \int_{\frac{1}{n+1}}^{\frac{1}{n}} \tan^{-1}(nx) \, dx = \int_{\frac{n}{n+1}}^{1} \tan^{-1}(t) \cdot \frac{dt}{n} \] and \[ \int_{\frac{1}{n+1}}^{\frac{1}{n}} \sin^{-1}(nx) \, dx = \int_{\frac{n}{n+1}}^{1} \sin^{-1}(t) \cdot \frac{dt}{n}. \] ### Step 2: Substitute into the Limit Now substituting these into our limit expression: \[ \lim_{n \to \infty} \frac{\frac{1}{n} \int_{\frac{n}{n+1}}^{1} \tan^{-1}(t) \, dt}{\frac{1}{n} \int_{\frac{n}{n+1}}^{1} \sin^{-1}(t) \, dt} = \lim_{n \to \infty} \frac{\int_{\frac{n}{n+1}}^{1} \tan^{-1}(t) \, dt}{\int_{\frac{n}{n+1}}^{1} \sin^{-1}(t) \, dt}. \] ### Step 3: Evaluate the Limit As \( n \to \infty \), the lower limit \( \frac{n}{n+1} \) approaches \( 1 \). Therefore, we can evaluate the integrals: \[ \lim_{n \to \infty} \int_{\frac{n}{n+1}}^{1} \tan^{-1}(t) \, dt \quad \text{and} \quad \lim_{n \to \infty} \int_{\frac{n}{n+1}}^{1} \sin^{-1}(t) \, dt. \] Both integrals approach \( 0 \) as the lower limit approaches \( 1 \). ### Step 4: Apply L'Hôpital's Rule Since both the numerator and denominator approach \( 0 \), we can apply L'Hôpital's Rule: \[ \lim_{n \to \infty} \frac{\frac{d}{dn} \int_{\frac{n}{n+1}}^{1} \tan^{-1}(t) \, dt}{\frac{d}{dn} \int_{\frac{n}{n+1}}^{1} \sin^{-1}(t) \, dt}. \] Using Leibniz's rule, we differentiate under the integral sign. ### Step 5: Differentiate the Integrals The derivative of the numerator becomes: \[ -\tan^{-1}\left(\frac{n}{n+1}\right) \cdot \frac{1}{(n+1)^2} \] and for the denominator: \[ -\sin^{-1}\left(\frac{n}{n+1}\right) \cdot \frac{1}{(n+1)^2}. \] ### Step 6: Evaluate the Final Limit Thus, we have: \[ \lim_{n \to \infty} \frac{\tan^{-1}\left(\frac{n}{n+1}\right)}{\sin^{-1}\left(\frac{n}{n+1}\right)}. \] As \( n \to \infty \), both \( \tan^{-1}(1) \) and \( \sin^{-1}(1) \) approach \( \frac{\pi}{4} \) and \( \frac{\pi}{2} \) respectively. Thus, the limit simplifies to: \[ \lim_{n \to \infty} \frac{\frac{\pi}{4}}{\frac{\pi}{2}} = \frac{1}{2}. \] ### Final Answer The limit evaluates to: \[ \frac{1}{2}. \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 1|64 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 1 Part-II|75 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise High Level Problem|26 Videos
  • COMBINATORICS

    RESONANCE ENGLISH|Exercise Exercise-2 (Part-II: Previously Asked Question of RMO)|5 Videos
  • DPP

    RESONANCE ENGLISH|Exercise QUESTION|656 Videos

Similar Questions

Explore conceptually related problems

lim_(n to oo)(n!)/((n+1)!-n!)

lim_(nrarr oo)(1+sin.(1)/(n))^n equals

lim_(ntooo)(sin^(n)1+cos^(n)1)^(n) is equal to

lim_(n to oo) {(1)/(n)+(1)/(n+1)+(1)/(n+2)+...+(1)/(3n)}=

lim_(xrarr oo) (4^(1//n)-1)/(3^(1//n)-1) is equal to

int_(0)^(pi//2n)(dx)/(1+(tan nx)^(n)) is equal to n in N :

lim_(nto oo) (2^n+5^n)^(1//n) is equal to

lim_(ntooo) ((n^(2)-n+1)/(n^(2)-n-1))^(n(n-1)) is equal to

Let C_(n)= int_(1//n+1)^(1//n)(tan^(-1)(nx))/(sin^(-1) (nx)) dx , "then " lim_(n rarr infty) n^(n). C_(n) is equal to

7. lim_(n->oo) (2^(1/n)-1)/(2^(1/n)+1)

RESONANCE ENGLISH-DEFINITE INTEGRATION & ITS APPLICATION -Self practive problem
  1. (i) If f(x) = int(0)^(sin^(2)x)sin^(-1)sqrt(t)dt+int(0)^(cos^(2)x)cos^...

    Text Solution

    |

  2. If y = int(1)^(x) xsqrt(lnt)dt then find the value of (d^(2)y)/(dx^(...

    Text Solution

    |

  3. lim(n to oo)(int(1//(n+1))^(1//n)tan^(-1)(nx)dt)/(int(1//(n+1))^(1//n)...

    Text Solution

    |

  4. Let f be a differentiable function on R and satisfying the integral eq...

    Text Solution

    |

  5. Evaluate : int(0)^(2)x^(3//2)sqrt(2-x)dx.

    Text Solution

    |

  6. Prove the following inequalities : (i) (sqrt(3))/(8) lt int(pi//4)^(...

    Text Solution

    |

  7. Show that (i) (1)/(10sqrt(2))lt underset(0)overset(1)int(x^(9))/(sq...

    Text Solution

    |

  8. If In=int0^(pi//4)tan^("n")x dx , prove that In+I(n-2)=1/(n+1)dot

    Text Solution

    |

  9. Find the area enclosed betweent the curve y = x^(2)+3, y = 0, x = -...

    Text Solution

    |

  10. int sinx dx

    Text Solution

    |

  11. Find the area of the region bounded by the curve y^2=2y-x and the y-ax...

    Text Solution

    |

  12. Find the area bounded by the y-axis and the curve x = e^(y) sin piy b...

    Text Solution

    |

  13. The area bounded by (x^(2))/(16) + (y^(2))/(9) = 1 and the line 3x + 4...

    Text Solution

    |

  14. Compute the area of the figure bounded by the straight lines x=0,x=2...

    Text Solution

    |

  15. If the area bounded by f(x)=sqrt(tan x), y=f(c), x=0 and x=a, 0ltcltal...

    Text Solution

    |

  16. Find the area included between the parabolas x=y^(2) and x = 3-2y^(2).

    Text Solution

    |

  17. If An be the area bounded by the curve y=(tanx)^n and the lines x=0,\ ...

    Text Solution

    |

  18. If int(1)^(x) (dt)/(|t|sqrt(t^(2)-t)) = (pi)/(6), then x can be equal ...

    Text Solution

    |

  19. The value of the integral int(0)^(1)(dx)/(x^(2)+2x cos alpha +1),0ltal...

    Text Solution

    |

  20. If f(x)={{:(x,xlt1),(x-1,xge1):}, then underset(0)overset(2)intx^(2)f(...

    Text Solution

    |