Home
Class 12
MATHS
Evaluate : int(0)^(2)x^(3//2)sqrt(2-x)dx...

Evaluate : `int_(0)^(2)x^(3//2)sqrt(2-x)dx`.

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int_{0}^{2} x^{\frac{3}{2}} \sqrt{2-x} \, dx \), we will use the substitution method. Here are the steps: ### Step 1: Substitution Let \( x = 2 \cos^2 \theta \). Then, we differentiate to find \( dx \): \[ dx = 2 \cdot 2 \cos \theta (-\sin \theta) \, d\theta = -4 \cos \theta \sin \theta \, d\theta \] ### Step 2: Change the limits of integration When \( x = 0 \): \[ 0 = 2 \cos^2 \theta \implies \cos^2 \theta = 0 \implies \theta = \frac{\pi}{2} \] When \( x = 2 \): \[ 2 = 2 \cos^2 \theta \implies \cos^2 \theta = 1 \implies \theta = 0 \] Thus, the limits change from \( x = 0 \) to \( x = 2 \) into \( \theta = \frac{\pi}{2} \) to \( \theta = 0 \). ### Step 3: Substitute into the integral Now substitute \( x \) and \( dx \) into the integral: \[ \int_{0}^{2} x^{\frac{3}{2}} \sqrt{2-x} \, dx = \int_{\frac{\pi}{2}}^{0} (2 \cos^2 \theta)^{\frac{3}{2}} \sqrt{2 - 2 \cos^2 \theta} (-4 \cos \theta \sin \theta) \, d\theta \] ### Step 4: Simplify the integrand First, simplify \( (2 \cos^2 \theta)^{\frac{3}{2}} \): \[ (2 \cos^2 \theta)^{\frac{3}{2}} = 2^{\frac{3}{2}} \cos^3 \theta \] Next, simplify \( \sqrt{2 - 2 \cos^2 \theta} \): \[ \sqrt{2 - 2 \cos^2 \theta} = \sqrt{2(1 - \cos^2 \theta)} = \sqrt{2 \sin^2 \theta} = \sqrt{2} \sin \theta \] ### Step 5: Combine everything Now substitute these back into the integral: \[ \int_{\frac{\pi}{2}}^{0} 2^{\frac{3}{2}} \cos^3 \theta \cdot \sqrt{2} \sin \theta \cdot (-4 \cos \theta \sin \theta) \, d\theta \] This simplifies to: \[ -4 \cdot 2^{2} \int_{\frac{\pi}{2}}^{0} \cos^4 \theta \sin^2 \theta \, d\theta \] or \[ -16 \int_{\frac{\pi}{2}}^{0} \cos^4 \theta \sin^2 \theta \, d\theta \] ### Step 6: Change the limits Using the property of integrals, we can change the limits: \[ 16 \int_{0}^{\frac{\pi}{2}} \cos^4 \theta \sin^2 \theta \, d\theta \] ### Step 7: Use the known integral formula We use the formula: \[ \int_{0}^{\frac{\pi}{2}} \sin^m x \cos^n x \, dx = \frac{(n-1)(n-3)(n-5)...}{(m+n)(m+n-1)(m+n-2)...} \cdot \frac{\pi}{2} \] Here, \( m = 2 \) and \( n = 4 \): \[ = \frac{(4-1)}{(2+4)} \cdot \frac{(4-3)}{(2+4-2)} \cdot \frac{\pi}{2} = \frac{3}{6} \cdot \frac{1}{4} \cdot \frac{\pi}{2} \] This simplifies to: \[ \frac{3}{24} \cdot \frac{\pi}{2} = \frac{3\pi}{48} \] ### Step 8: Final calculation Putting it all together: \[ 16 \cdot \frac{3\pi}{48} = \frac{48\pi}{48} = \pi \] ### Final Answer Thus, the value of the integral is: \[ \int_{0}^{2} x^{\frac{3}{2}} \sqrt{2-x} \, dx = \pi \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 1|64 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 1 Part-II|75 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise High Level Problem|26 Videos
  • COMBINATORICS

    RESONANCE ENGLISH|Exercise Exercise-2 (Part-II: Previously Asked Question of RMO)|5 Videos
  • DPP

    RESONANCE ENGLISH|Exercise QUESTION|656 Videos

Similar Questions

Explore conceptually related problems

Evaluate : int_(0)^(a)x^(5//2)sqrt(a-x)dx

Evaluate int _(0)^(2) x^3 dx

Evaluate int_(0)^(2)2^(x)dx

Evaluate : int_(0)^(4) x(4-x)^(3//2)dx

The value of (int_(0)^(2)x^(4)sqrt(4-x^(2))dx)/(int_(0)^(2)x^(2)sqrt(4-x^(2)dx) is equal to

Evaluate: int_0^a(x^4)/(sqrt(a^2-x^2))dx

int_(0)^(2) sqrt(2-x)dx .

Evaluate : int_(0)^(pi)sqrt(1+sin2x)dx .

Evaluate: int_0^(1)x(dx)/(sqrt(1-x^(2)))

Evaluate : int_(0)^(a) (1)/(sqrt(a^(2) -x^(2))) dx

RESONANCE ENGLISH-DEFINITE INTEGRATION & ITS APPLICATION -Self practive problem
  1. lim(n to oo)(int(1//(n+1))^(1//n)tan^(-1)(nx)dt)/(int(1//(n+1))^(1//n)...

    Text Solution

    |

  2. Let f be a differentiable function on R and satisfying the integral eq...

    Text Solution

    |

  3. Evaluate : int(0)^(2)x^(3//2)sqrt(2-x)dx.

    Text Solution

    |

  4. Prove the following inequalities : (i) (sqrt(3))/(8) lt int(pi//4)^(...

    Text Solution

    |

  5. Show that (i) (1)/(10sqrt(2))lt underset(0)overset(1)int(x^(9))/(sq...

    Text Solution

    |

  6. If In=int0^(pi//4)tan^("n")x dx , prove that In+I(n-2)=1/(n+1)dot

    Text Solution

    |

  7. Find the area enclosed betweent the curve y = x^(2)+3, y = 0, x = -...

    Text Solution

    |

  8. int sinx dx

    Text Solution

    |

  9. Find the area of the region bounded by the curve y^2=2y-x and the y-ax...

    Text Solution

    |

  10. Find the area bounded by the y-axis and the curve x = e^(y) sin piy b...

    Text Solution

    |

  11. The area bounded by (x^(2))/(16) + (y^(2))/(9) = 1 and the line 3x + 4...

    Text Solution

    |

  12. Compute the area of the figure bounded by the straight lines x=0,x=2...

    Text Solution

    |

  13. If the area bounded by f(x)=sqrt(tan x), y=f(c), x=0 and x=a, 0ltcltal...

    Text Solution

    |

  14. Find the area included between the parabolas x=y^(2) and x = 3-2y^(2).

    Text Solution

    |

  15. If An be the area bounded by the curve y=(tanx)^n and the lines x=0,\ ...

    Text Solution

    |

  16. If int(1)^(x) (dt)/(|t|sqrt(t^(2)-t)) = (pi)/(6), then x can be equal ...

    Text Solution

    |

  17. The value of the integral int(0)^(1)(dx)/(x^(2)+2x cos alpha +1),0ltal...

    Text Solution

    |

  18. If f(x)={{:(x,xlt1),(x-1,xge1):}, then underset(0)overset(2)intx^(2)f(...

    Text Solution

    |

  19. If f(0) = 1 , f(2) = 3, f'(2) = 5 and f'(0) is finite, then int(0)^(1...

    Text Solution

    |

  20. int(0)^(pi)|1+2cosx| dx is equal to :

    Text Solution

    |