Home
Class 12
MATHS
Prove the following inequalities : (i)...

Prove the following inequalities :
(i) `(sqrt(3))/(8) lt int_(pi//4)^(pi//3)(sinx)/(x)dx lt (sqrt(2))/6`, (ii) `4 le int_(1)^(3)sqrt((3x^(2)+x^(2)))dx le 20 sqrt(30)`

Text Solution

AI Generated Solution

The correct Answer is:
To prove the given inequalities, we will tackle each part step by step. ### Part (i): Prove that \[ \frac{\sqrt{3}}{8} < \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{\sin x}{x} \, dx < \frac{\sqrt{2}}{6} \] **Step 1: Evaluate the integral bounds.** We need to find the value of the integral \(\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{\sin x}{x} \, dx\). To do this, we can analyze the function \(\frac{\sin x}{x}\) over the interval \([\frac{\pi}{4}, \frac{\pi}{3}]\). **Hint 1:** Remember that \(\sin x\) is positive and less than or equal to \(x\) for \(x > 0\). **Step 2: Establish the lower bound.** To find a lower bound for \(\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{\sin x}{x} \, dx\), we can use the fact that \(\sin x\) is increasing in this interval. \[ \sin x \geq \sin\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2} \] Thus, \[ \frac{\sin x}{x} \geq \frac{\sqrt{3}/2}{\frac{\pi}{3}} = \frac{3\sqrt{3}}{2\pi} \] Now, we can calculate: \[ \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{\sin x}{x} \, dx \geq \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{3\sqrt{3}}{2\pi} \, dx = \frac{3\sqrt{3}}{2\pi} \left(\frac{\pi}{3} - \frac{\pi}{4}\right) \] Calculating the difference: \[ \frac{\pi}{3} - \frac{\pi}{4} = \frac{4\pi - 3\pi}{12} = \frac{\pi}{12} \] So, \[ \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{\sin x}{x} \, dx \geq \frac{3\sqrt{3}}{2\pi} \cdot \frac{\pi}{12} = \frac{3\sqrt{3}}{24} = \frac{\sqrt{3}}{8} \] **Step 3: Establish the upper bound.** For the upper bound, we can use the fact that \(\sin x \leq x\): \[ \frac{\sin x}{x} \leq 1 \] Thus, \[ \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{\sin x}{x} \, dx < \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} 1 \, dx = \frac{\pi}{3} - \frac{\pi}{4} = \frac{\pi}{12} \] Now, we need to compare \(\frac{\pi}{12}\) with \(\frac{\sqrt{2}}{6}\): \[ \frac{\pi}{12} < \frac{\sqrt{2}}{6} \] This can be checked by cross-multiplying: \[ \pi \cdot 6 < \sqrt{2} \cdot 12 \Rightarrow 6\pi < 12\sqrt{2} \Rightarrow \frac{\pi}{2} < 2\sqrt{2} \] This is true since \(\frac{\pi}{2} \approx 1.57\) and \(2\sqrt{2} \approx 2.83\). Thus, we have shown: \[ \frac{\sqrt{3}}{8} < \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{\sin x}{x} \, dx < \frac{\sqrt{2}}{6} \] ### Part (ii): Prove that \[ 4 \leq \int_{1}^{3} \sqrt{3x^2 + x^2} \, dx \leq 20\sqrt{30} \] **Step 1: Simplify the integrand.** First, simplify the integrand: \[ \sqrt{3x^2 + x^2} = \sqrt{4x^2} = 2x \] **Step 2: Evaluate the integral.** Now, we need to evaluate: \[ \int_{1}^{3} 2x \, dx = 2 \left[ \frac{x^2}{2} \right]_{1}^{3} = [x^2]_{1}^{3} = 9 - 1 = 8 \] **Step 3: Establish the bounds.** For the lower bound: \[ \int_{1}^{3} 2x \, dx = 8 \geq 4 \] For the upper bound: \[ \int_{1}^{3} 2x \, dx = 8 \leq 20\sqrt{30} \] Calculating \(20\sqrt{30}\): \[ 20\sqrt{30} \approx 20 \cdot 5.477 \approx 109.54 \] Thus, we have shown: \[ 4 \leq \int_{1}^{3} \sqrt{3x^2 + x^2} \, dx \leq 20\sqrt{30} \] ### Final Summary of Results: 1. \(\frac{\sqrt{3}}{8} < \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{\sin x}{x} \, dx < \frac{\sqrt{2}}{6}\) 2. \(4 \leq \int_{1}^{3} \sqrt{3x^2 + x^2} \, dx \leq 20\sqrt{30}\)
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 1|64 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 1 Part-II|75 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise High Level Problem|26 Videos
  • COMBINATORICS

    RESONANCE ENGLISH|Exercise Exercise-2 (Part-II: Previously Asked Question of RMO)|5 Videos
  • DPP

    RESONANCE ENGLISH|Exercise QUESTION|656 Videos

Similar Questions

Explore conceptually related problems

Prove that 4le int_(1)^(3) sqrt(3+x^(3)) dx le 2sqrt30 .

Prove that (1+sqrt(2))/2lt int_(0)^(pi//2)(sinx)/x dx lt (pi+2sqrt(2))/4

int_(pi/6)^(pi/3) (sin x+ cos x)/(sqrt(sin 2x))dx

int_(0)^(pi//6) sqrt(1-sin 2x) dx

Prove that 4 lt= int_1^3 sqrt(3+x^2) dx lt= 4sqrt(3)

Prove the following : 4/pi lt int_(pi/4)^(pi/3) (tanx)/(x) lt (3sqrt(3))/(pi)

Evaluate int_(-pi//3)^(pi//3)(sqrt(1+sin2x))/(|cosx|)dx ,

Prove the following : 1 lt int_(0)^(pi//2)sqrt(sinx)dx lt sqrt(pi/2)

Evaluate: int1/(sqrt(8+3x-x^2))\ dx

Evaluate: int_(pi/6)^(pi/3)(dx)/(1+sqrt(tanx))

RESONANCE ENGLISH-DEFINITE INTEGRATION & ITS APPLICATION -Self practive problem
  1. Let f be a differentiable function on R and satisfying the integral eq...

    Text Solution

    |

  2. Evaluate : int(0)^(2)x^(3//2)sqrt(2-x)dx.

    Text Solution

    |

  3. Prove the following inequalities : (i) (sqrt(3))/(8) lt int(pi//4)^(...

    Text Solution

    |

  4. Show that (i) (1)/(10sqrt(2))lt underset(0)overset(1)int(x^(9))/(sq...

    Text Solution

    |

  5. If In=int0^(pi//4)tan^("n")x dx , prove that In+I(n-2)=1/(n+1)dot

    Text Solution

    |

  6. Find the area enclosed betweent the curve y = x^(2)+3, y = 0, x = -...

    Text Solution

    |

  7. int sinx dx

    Text Solution

    |

  8. Find the area of the region bounded by the curve y^2=2y-x and the y-ax...

    Text Solution

    |

  9. Find the area bounded by the y-axis and the curve x = e^(y) sin piy b...

    Text Solution

    |

  10. The area bounded by (x^(2))/(16) + (y^(2))/(9) = 1 and the line 3x + 4...

    Text Solution

    |

  11. Compute the area of the figure bounded by the straight lines x=0,x=2...

    Text Solution

    |

  12. If the area bounded by f(x)=sqrt(tan x), y=f(c), x=0 and x=a, 0ltcltal...

    Text Solution

    |

  13. Find the area included between the parabolas x=y^(2) and x = 3-2y^(2).

    Text Solution

    |

  14. If An be the area bounded by the curve y=(tanx)^n and the lines x=0,\ ...

    Text Solution

    |

  15. If int(1)^(x) (dt)/(|t|sqrt(t^(2)-t)) = (pi)/(6), then x can be equal ...

    Text Solution

    |

  16. The value of the integral int(0)^(1)(dx)/(x^(2)+2x cos alpha +1),0ltal...

    Text Solution

    |

  17. If f(x)={{:(x,xlt1),(x-1,xge1):}, then underset(0)overset(2)intx^(2)f(...

    Text Solution

    |

  18. If f(0) = 1 , f(2) = 3, f'(2) = 5 and f'(0) is finite, then int(0)^(1...

    Text Solution

    |

  19. int(0)^(pi)|1+2cosx| dx is equal to :

    Text Solution

    |

  20. The value of int(1)^(3) (|x-2|+[x])dx is ([x] stands for greatest inte...

    Text Solution

    |