Home
Class 12
MATHS
If f(0) = 1 , f(2) = 3, f'(2) = 5 and f...

If `f(0) = 1 , f(2) = 3, f'(2) = 5` and `f'(0)` is finite, then `int_(0)^(1)x. f^''(2x) dx` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integral: \[ \int_{0}^{1} x \cdot f''(2x) \, dx \] Given the information: - \( f(0) = 1 \) - \( f(2) = 3 \) - \( f'(2) = 5 \) - \( f'(0) \) is finite. ### Step 1: Apply Integration by Parts We will use the integration by parts formula: \[ \int u \, dv = uv - \int v \, du \] Let: - \( u = x \) (thus \( du = dx \)) - \( dv = f''(2x) \, dx \) (thus \( v = \int f''(2x) \, dx \)) To find \( v \), we need to integrate \( f''(2x) \): \[ v = \int f''(2x) \, dx = \frac{1}{2} f'(2x) + C \] ### Step 2: Substitute into Integration by Parts Now substituting \( u \) and \( v \) into the integration by parts formula: \[ \int_{0}^{1} x f''(2x) \, dx = \left[ x \cdot \frac{1}{2} f'(2x) \right]_{0}^{1} - \int_{0}^{1} \frac{1}{2} f'(2x) \, dx \] ### Step 3: Evaluate the Boundary Terms Calculating the boundary term: \[ \left[ x \cdot \frac{1}{2} f'(2x) \right]_{0}^{1} = \left(1 \cdot \frac{1}{2} f'(2)\right) - \left(0 \cdot \frac{1}{2} f'(0)\right) = \frac{1}{2} f'(2) - 0 = \frac{1}{2} \cdot 5 = \frac{5}{2} \] ### Step 4: Evaluate the Remaining Integral Now we need to evaluate: \[ \int_{0}^{1} \frac{1}{2} f'(2x) \, dx \] Using the substitution \( u = 2x \), then \( du = 2dx \) or \( dx = \frac{du}{2} \). The limits change from \( x = 0 \) to \( x = 1 \) which corresponds to \( u = 0 \) to \( u = 2 \). Thus, we have: \[ \int_{0}^{1} \frac{1}{2} f'(2x) \, dx = \frac{1}{2} \int_{0}^{2} f'(u) \cdot \frac{du}{2} = \frac{1}{4} \int_{0}^{2} f'(u) \, du \] ### Step 5: Evaluate the Integral of \( f' \) Using the Fundamental Theorem of Calculus: \[ \int_{0}^{2} f'(u) \, du = f(2) - f(0) = 3 - 1 = 2 \] Thus: \[ \frac{1}{4} \int_{0}^{2} f'(u) \, du = \frac{1}{4} \cdot 2 = \frac{1}{2} \] ### Step 6: Combine Results Now substituting back into our integration by parts result: \[ \int_{0}^{1} x f''(2x) \, dx = \frac{5}{2} - \frac{1}{2} = \frac{4}{2} = 2 \] ### Final Answer Thus, the value of the integral is: \[ \int_{0}^{1} x f''(2x) \, dx = 2 \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 1|64 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 1 Part-II|75 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise High Level Problem|26 Videos
  • COMBINATORICS

    RESONANCE ENGLISH|Exercise Exercise-2 (Part-II: Previously Asked Question of RMO)|5 Videos
  • DPP

    RESONANCE ENGLISH|Exercise QUESTION|656 Videos

Similar Questions

Explore conceptually related problems

If f(0)=0, f(3)=3 and f'(3)=4 , then the value of int_(0)^(1)xf'' (3x)dx is equal to

If f(0)=1,f(2)=3,f'(2)=5 ,then find the value of I_(1)=int_(0)^(1)xf''(2x)dx

Let f be a differentiable function from R to R such that |f(x) - f(y) | le 2|x-y|^(3/2), for all x, y in R . If f(0) =1, then int_(0)^(1) f^(2)(x) dx is equal to

Let f(x) be a polynomial of degree 2 satisfying f(0)=1, f(0) =-2 and f''(0)=6 , then int_(-1)^(2) f(x) is equal to

If f'(x) = f(x)+ int _(0)^(1)f (x) dx and given f (0) =1, then int f (x) dx is equal to :

If int_(0)^(x)((t^(3)+t)dt)/((1+3t^(2)))=f(x) , then int_(0)^(1)f^(')(x) dx is equal to

If f (6-x ) =f (x), for all then 1/5 int _(2)^(3) x [f (x) + f (x+1)]dx is equal to :

If |f(x)-f(y)|le2|x-y|^((3)/(2)) AAx,yinR and f(0)=1 then value of int_(0)^(1)f^2(x)dx is equal to (a) 1 (b) 2 (c) sqrt2 (d) 4

Let f (x) be a conitnuous function defined on [0,a] such that f(a-x)=f(x)"for all" x in [ 0,a] . If int_(0)^(a//2) f(x) dx=alpha, then int _(0)^(a) f(x) dx is equal to

If f(0)=1,f(2)=3,f^'(2)=5 ,then find the value of int_0^1xf^('')(2x)dx

RESONANCE ENGLISH-DEFINITE INTEGRATION & ITS APPLICATION -Self practive problem
  1. The value of the integral int(0)^(1)(dx)/(x^(2)+2x cos alpha +1),0ltal...

    Text Solution

    |

  2. If f(x)={{:(x,xlt1),(x-1,xge1):}, then underset(0)overset(2)intx^(2)f(...

    Text Solution

    |

  3. If f(0) = 1 , f(2) = 3, f'(2) = 5 and f'(0) is finite, then int(0)^(1...

    Text Solution

    |

  4. int(0)^(pi)|1+2cosx| dx is equal to :

    Text Solution

    |

  5. The value of int(1)^(3) (|x-2|+[x])dx is ([x] stands for greatest inte...

    Text Solution

    |

  6. The value of int(0)^(infty)[2e^(-x)] dx (where ,[.] denotes the greate...

    Text Solution

    |

  7. int(lnpi-ln2)^(lnpi) (e^(x))/(1-cos(2/3e^(x))) dx is equal to

    Text Solution

    |

  8. If I(1)=int(e)^(e^(2))(dx)/(lnx) and I(2) = int(1)^(2)(e^(x))/(x) dx(1...

    Text Solution

    |

  9. int(0)^(pi/4)(x.sinx)/(cos^(3)x) dx equal to :

    Text Solution

    |

  10. The value if definite integral int(3/2)^(9/4)[sqrt(2x-sqrt(5(4x-5)))+s...

    Text Solution

    |

  11. Ifint(log2)^x(dx)/(sqrt(e^x-1))=pi/6,"then " x " is equal to" (a)4 ...

    Text Solution

    |

  12. int(0)^(oo)(x^(2)+1)/(x^(4)+7x^(2)+1)dx=

    Text Solution

    |

  13. Suppose for every integer n, .int(n)^(n+1) f(x)dx = n^(2). The value o...

    Text Solution

    |

  14. If f(x) and g(x) are continuous functions, then int(In lamda)^(In (1//...

    Text Solution

    |

  15. int- 1^1cot^(- 1)((x+x^3)/(1+x^4))dx

    Text Solution

    |

  16. int(-2)^(0){x^(3)+3x^(2)+3x+3+(x+1)cos(x+1)} dx is equal to

    Text Solution

    |

  17. int(-1)^(1)xln(1+e^(x))dx=.

    Text Solution

    |

  18. If int(-1)^(3//2)|xsinpix|dx = (k)/(pi^(2)), then the value of k is :

    Text Solution

    |

  19. The value of definite integral int0^(pi^2/4) dx/(1+sin sqrtx+ cos sqrt...

    Text Solution

    |

  20. int(2-ln3)^(3+ln3)(ln(4+x))/(ln(4+x)+ln(9-x))dx is equal to :

    Text Solution

    |