Home
Class 12
MATHS
int(0)^(pi)|1+2cosx| dx is equal to :...

`int_(0)^(pi)|1+2cosx|` dx is equal to :

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{0}^{\pi} |1 + 2 \cos x| \, dx \), we will follow these steps: ### Step 1: Identify where the expression inside the modulus is zero We need to find the points where \( 1 + 2 \cos x = 0 \). \[ 1 + 2 \cos x = 0 \implies 2 \cos x = -1 \implies \cos x = -\frac{1}{2} \] The solutions to \( \cos x = -\frac{1}{2} \) in the interval \( [0, \pi] \) is: \[ x = \frac{2\pi}{3} \] ### Step 2: Determine the sign of \( 1 + 2 \cos x \) in the intervals We will analyze the sign of \( 1 + 2 \cos x \) in the intervals \( [0, \frac{2\pi}{3}] \) and \( [\frac{2\pi}{3}, \pi] \). - For \( x \in [0, \frac{2\pi}{3}] \): - Choose \( x = 0 \): \( 1 + 2 \cos(0) = 1 + 2(1) = 3 > 0 \) - For \( x \in [\frac{2\pi}{3}, \pi] \): - Choose \( x = \pi \): \( 1 + 2 \cos(\pi) = 1 + 2(-1) = -1 < 0 \) Thus, we can conclude: - \( 1 + 2 \cos x \geq 0 \) in \( [0, \frac{2\pi}{3}] \) - \( 1 + 2 \cos x < 0 \) in \( [\frac{2\pi}{3}, \pi] \) ### Step 3: Rewrite the integral using the modulus Now we can express the integral as: \[ \int_{0}^{\pi} |1 + 2 \cos x| \, dx = \int_{0}^{\frac{2\pi}{3}} (1 + 2 \cos x) \, dx + \int_{\frac{2\pi}{3}}^{\pi} -(1 + 2 \cos x) \, dx \] ### Step 4: Evaluate the first integral \[ \int_{0}^{\frac{2\pi}{3}} (1 + 2 \cos x) \, dx = \int_{0}^{\frac{2\pi}{3}} 1 \, dx + 2 \int_{0}^{\frac{2\pi}{3}} \cos x \, dx \] Calculating each part: 1. \( \int_{0}^{\frac{2\pi}{3}} 1 \, dx = \left[ x \right]_{0}^{\frac{2\pi}{3}} = \frac{2\pi}{3} \) 2. \( \int_{0}^{\frac{2\pi}{3}} \cos x \, dx = \left[ \sin x \right]_{0}^{\frac{2\pi}{3}} = \sin\left(\frac{2\pi}{3}\right) - \sin(0) = \frac{\sqrt{3}}{2} - 0 = \frac{\sqrt{3}}{2} \) Thus, \[ \int_{0}^{\frac{2\pi}{3}} (1 + 2 \cos x) \, dx = \frac{2\pi}{3} + 2 \cdot \frac{\sqrt{3}}{2} = \frac{2\pi}{3} + \sqrt{3} \] ### Step 5: Evaluate the second integral \[ \int_{\frac{2\pi}{3}}^{\pi} -(1 + 2 \cos x) \, dx = -\int_{\frac{2\pi}{3}}^{\pi} (1 + 2 \cos x) \, dx \] Calculating: \[ -\left( \int_{\frac{2\pi}{3}}^{\pi} 1 \, dx + 2 \int_{\frac{2\pi}{3}}^{\pi} \cos x \, dx \right) \] 1. \( \int_{\frac{2\pi}{3}}^{\pi} 1 \, dx = \left[ x \right]_{\frac{2\pi}{3}}^{\pi} = \pi - \frac{2\pi}{3} = \frac{\pi}{3} \) 2. \( \int_{\frac{2\pi}{3}}^{\pi} \cos x \, dx = \left[ \sin x \right]_{\frac{2\pi}{3}}^{\pi} = \sin(\pi) - \sin\left(\frac{2\pi}{3}\right) = 0 - \frac{\sqrt{3}}{2} = -\frac{\sqrt{3}}{2} \) Thus, \[ -\left( \frac{\pi}{3} + 2 \cdot \left(-\frac{\sqrt{3}}{2}\right) \right) = -\left( \frac{\pi}{3} - \sqrt{3} \right) = -\frac{\pi}{3} + \sqrt{3} \] ### Step 6: Combine the results Now we combine both integrals: \[ \int_{0}^{\pi} |1 + 2 \cos x| \, dx = \left( \frac{2\pi}{3} + \sqrt{3} \right) + \left( -\frac{\pi}{3} + \sqrt{3} \right) \] This simplifies to: \[ \frac{2\pi}{3} - \frac{\pi}{3} + \sqrt{3} + \sqrt{3} = \frac{\pi}{3} + 2\sqrt{3} \] ### Final Result Thus, the value of the integral is: \[ \int_{0}^{\pi} |1 + 2 \cos x| \, dx = \frac{\pi}{3} + 2\sqrt{3} \] ---
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 1|64 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 1 Part-II|75 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise High Level Problem|26 Videos
  • COMBINATORICS

    RESONANCE ENGLISH|Exercise Exercise-2 (Part-II: Previously Asked Question of RMO)|5 Videos
  • DPP

    RESONANCE ENGLISH|Exercise QUESTION|656 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi)|cosx|dx=?

int_(0)^(1) |sin 2pi x|dx id equal to

The value of the definite integral I = int_(0)^(pi)xsqrt(1+|cosx|) dx is equal to (A) 2sqrt(2)pi (B) sqrt(2) pi (C) 2 pi (D) 4 pi

int_(-pi//2)^(pi//2) cos x dx is equal to A) 0 B) 1 C) 2 D) 4

int_(-pi/2)^(pi/2)cosx dx

int_(0)^(1//2) |sin pi x|dx is equal to

int_(0)^(pi)(x.sin^(2)x.cosx)dx is equal to

int_(0)^(pi/6) sin2x . cosx dx

The value of int_(0)^(pi)(|x|sin^(2)x)/(1+2|cosx|sinx)dx is equal to

Evaluate int_(0)^(2pi)|cosx|dx

RESONANCE ENGLISH-DEFINITE INTEGRATION & ITS APPLICATION -Self practive problem
  1. The value of the integral int(0)^(1)(dx)/(x^(2)+2x cos alpha +1),0ltal...

    Text Solution

    |

  2. If f(x)={{:(x,xlt1),(x-1,xge1):}, then underset(0)overset(2)intx^(2)f(...

    Text Solution

    |

  3. If f(0) = 1 , f(2) = 3, f'(2) = 5 and f'(0) is finite, then int(0)^(1...

    Text Solution

    |

  4. int(0)^(pi)|1+2cosx| dx is equal to :

    Text Solution

    |

  5. The value of int(1)^(3) (|x-2|+[x])dx is ([x] stands for greatest inte...

    Text Solution

    |

  6. The value of int(0)^(infty)[2e^(-x)] dx (where ,[.] denotes the greate...

    Text Solution

    |

  7. int(lnpi-ln2)^(lnpi) (e^(x))/(1-cos(2/3e^(x))) dx is equal to

    Text Solution

    |

  8. If I(1)=int(e)^(e^(2))(dx)/(lnx) and I(2) = int(1)^(2)(e^(x))/(x) dx(1...

    Text Solution

    |

  9. int(0)^(pi/4)(x.sinx)/(cos^(3)x) dx equal to :

    Text Solution

    |

  10. The value if definite integral int(3/2)^(9/4)[sqrt(2x-sqrt(5(4x-5)))+s...

    Text Solution

    |

  11. Ifint(log2)^x(dx)/(sqrt(e^x-1))=pi/6,"then " x " is equal to" (a)4 ...

    Text Solution

    |

  12. int(0)^(oo)(x^(2)+1)/(x^(4)+7x^(2)+1)dx=

    Text Solution

    |

  13. Suppose for every integer n, .int(n)^(n+1) f(x)dx = n^(2). The value o...

    Text Solution

    |

  14. If f(x) and g(x) are continuous functions, then int(In lamda)^(In (1//...

    Text Solution

    |

  15. int- 1^1cot^(- 1)((x+x^3)/(1+x^4))dx

    Text Solution

    |

  16. int(-2)^(0){x^(3)+3x^(2)+3x+3+(x+1)cos(x+1)} dx is equal to

    Text Solution

    |

  17. int(-1)^(1)xln(1+e^(x))dx=.

    Text Solution

    |

  18. If int(-1)^(3//2)|xsinpix|dx = (k)/(pi^(2)), then the value of k is :

    Text Solution

    |

  19. The value of definite integral int0^(pi^2/4) dx/(1+sin sqrtx+ cos sqrt...

    Text Solution

    |

  20. int(2-ln3)^(3+ln3)(ln(4+x))/(ln(4+x)+ln(9-x))dx is equal to :

    Text Solution

    |