Home
Class 12
MATHS
The value of int(1)^(3) (|x-2|+[x])dx is...

The value of `int_(1)^(3) (|x-2|+[x])dx` is `([x]` stands for greatest integer less than or equal to x)

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{1}^{3} (|x-2| + [x]) \, dx \), where \([x]\) denotes the greatest integer less than or equal to \(x\), we will break the integral into two parts based on the behavior of the absolute value and the greatest integer function. ### Step 1: Break the Integral into Intervals The absolute value function \( |x-2| \) changes at \( x = 2 \). Therefore, we can split the integral into two parts: \[ I = \int_{1}^{2} (|x-2| + [x]) \, dx + \int_{2}^{3} (|x-2| + [x]) \, dx \] ### Step 2: Evaluate Each Interval 1. **For \( x \in [1, 2] \)**: - Here, \( |x-2| = 2 - x \) (since \( x < 2 \)). - The greatest integer function \([x] = 1\) (since \( 1 \leq x < 2 \)). - Thus, the integral becomes: \[ \int_{1}^{2} ((2 - x) + 1) \, dx = \int_{1}^{2} (3 - x) \, dx \] 2. **For \( x \in [2, 3] \)**: - Here, \( |x-2| = x - 2 \) (since \( x \geq 2 \)). - The greatest integer function \([x] = 2\) (since \( 2 \leq x < 3 \)). - Thus, the integral becomes: \[ \int_{2}^{3} ((x - 2) + 2) \, dx = \int_{2}^{3} x \, dx \] ### Step 3: Calculate Each Integral 1. **Calculate \( \int_{1}^{2} (3 - x) \, dx \)**: \[ \int (3 - x) \, dx = 3x - \frac{x^2}{2} \] Evaluating from 1 to 2: \[ \left[ 3(2) - \frac{(2)^2}{2} \right] - \left[ 3(1) - \frac{(1)^2}{2} \right] = \left[ 6 - 2 \right] - \left[ 3 - 0.5 \right] = 4 - 2.5 = 1.5 \] 2. **Calculate \( \int_{2}^{3} x \, dx \)**: \[ \int x \, dx = \frac{x^2}{2} \] Evaluating from 2 to 3: \[ \left[ \frac{(3)^2}{2} \right] - \left[ \frac{(2)^2}{2} \right] = \left[ \frac{9}{2} \right] - \left[ \frac{4}{2} \right] = \frac{9}{2} - 2 = \frac{9}{2} - \frac{4}{2} = \frac{5}{2} \] ### Step 4: Combine the Results Now, we combine the results from both intervals: \[ I = 1.5 + \frac{5}{2} = \frac{3}{2} + \frac{5}{2} = \frac{8}{2} = 4 \] ### Final Answer Thus, the value of the integral is: \[ \boxed{4} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 1|64 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 1 Part-II|75 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise High Level Problem|26 Videos
  • COMBINATORICS

    RESONANCE ENGLISH|Exercise Exercise-2 (Part-II: Previously Asked Question of RMO)|5 Videos
  • DPP

    RESONANCE ENGLISH|Exercise QUESTION|656 Videos

Similar Questions

Explore conceptually related problems

The value of int_(-1)^(3)(|x|+|x-1|) dx is equal to

If f(x)=|x-1|-[x] , where [x] is the greatest integer less than or equal to x, then

The value of int_(-1)^(3){|x-2|+[x]} dx , where [.] denotes the greatest integer function, is equal to

The value of int_-1^1 (sin^2x)/([x/sqrt(2)]+1/2)dx , where [x] =greatest integer less than or equal to x , is (A) 1 (B) 0 (C) 4-sin4 (D) none of these

int_(-2)^(2) min(x-[x],-x-[x])dx equals, where [x] represents greates integer less than or equal to x.

The value of the integral int_(-2)^2 sin^2x/(-2[x/pi]+1/2)dx (where [x] denotes the greatest integer less then or equal to x) is

Let [x] denotes the greatest integer less than or equal to x and f(x)=[tan^(2)x] . Then

The value of [100(x-1)] is where [x] is the greatest integer less than or equal to x and x=(sum_(n=1)^44 cos n^@)/(sum_(n=1)^44 sin n^@)

If [x] denotes the greatest integer less than or equal to x, then ["log"_(10) 6730.4]=

Let [x] denote the greatest integer less than or equal to x . Then, int_(0)^(1.5)[x]dx=?

RESONANCE ENGLISH-DEFINITE INTEGRATION & ITS APPLICATION -Self practive problem
  1. The value of the integral int(0)^(1)(dx)/(x^(2)+2x cos alpha +1),0ltal...

    Text Solution

    |

  2. If f(x)={{:(x,xlt1),(x-1,xge1):}, then underset(0)overset(2)intx^(2)f(...

    Text Solution

    |

  3. If f(0) = 1 , f(2) = 3, f'(2) = 5 and f'(0) is finite, then int(0)^(1...

    Text Solution

    |

  4. int(0)^(pi)|1+2cosx| dx is equal to :

    Text Solution

    |

  5. The value of int(1)^(3) (|x-2|+[x])dx is ([x] stands for greatest inte...

    Text Solution

    |

  6. The value of int(0)^(infty)[2e^(-x)] dx (where ,[.] denotes the greate...

    Text Solution

    |

  7. int(lnpi-ln2)^(lnpi) (e^(x))/(1-cos(2/3e^(x))) dx is equal to

    Text Solution

    |

  8. If I(1)=int(e)^(e^(2))(dx)/(lnx) and I(2) = int(1)^(2)(e^(x))/(x) dx(1...

    Text Solution

    |

  9. int(0)^(pi/4)(x.sinx)/(cos^(3)x) dx equal to :

    Text Solution

    |

  10. The value if definite integral int(3/2)^(9/4)[sqrt(2x-sqrt(5(4x-5)))+s...

    Text Solution

    |

  11. Ifint(log2)^x(dx)/(sqrt(e^x-1))=pi/6,"then " x " is equal to" (a)4 ...

    Text Solution

    |

  12. int(0)^(oo)(x^(2)+1)/(x^(4)+7x^(2)+1)dx=

    Text Solution

    |

  13. Suppose for every integer n, .int(n)^(n+1) f(x)dx = n^(2). The value o...

    Text Solution

    |

  14. If f(x) and g(x) are continuous functions, then int(In lamda)^(In (1//...

    Text Solution

    |

  15. int- 1^1cot^(- 1)((x+x^3)/(1+x^4))dx

    Text Solution

    |

  16. int(-2)^(0){x^(3)+3x^(2)+3x+3+(x+1)cos(x+1)} dx is equal to

    Text Solution

    |

  17. int(-1)^(1)xln(1+e^(x))dx=.

    Text Solution

    |

  18. If int(-1)^(3//2)|xsinpix|dx = (k)/(pi^(2)), then the value of k is :

    Text Solution

    |

  19. The value of definite integral int0^(pi^2/4) dx/(1+sin sqrtx+ cos sqrt...

    Text Solution

    |

  20. int(2-ln3)^(3+ln3)(ln(4+x))/(ln(4+x)+ln(9-x))dx is equal to :

    Text Solution

    |