Home
Class 12
MATHS
int(lnpi-ln2)^(lnpi) (e^(x))/(1-cos(2/3e...

`int_(lnpi-ln2)^(lnpi) (e^(x))/(1-cos(2/3e^(x)))` dx is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int_{\ln \pi - \ln 2}^{\ln \pi} \frac{e^x}{1 - \cos\left(\frac{2}{3} e^x\right)} \, dx, \] we will follow these steps: ### Step 1: Change of Variables Let \( t = \frac{2}{3} e^x \). Then, we can express \( e^x \) in terms of \( t \): \[ e^x = \frac{3}{2} t. \] Now, we need to find \( dx \) in terms of \( dt \): \[ dx = \frac{dt}{\frac{2}{3} e^x} = \frac{dt}{\frac{2}{3} \cdot \frac{3}{2} t} = \frac{dt}{t}. \] ### Step 2: Change the Limits of Integration Next, we need to change the limits of integration. When \( x = \ln \pi - \ln 2 \): \[ t = \frac{2}{3} e^{\ln \pi - \ln 2} = \frac{2}{3} \cdot \frac{\pi}{2} = \frac{\pi}{3}. \] When \( x = \ln \pi \): \[ t = \frac{2}{3} e^{\ln \pi} = \frac{2}{3} \cdot \pi. \] Thus, the new limits are from \( \frac{\pi}{3} \) to \( \frac{2\pi}{3} \). ### Step 3: Substitute into the Integral Now we can substitute into the integral: \[ \int_{\frac{\pi}{3}}^{\frac{2\pi}{3}} \frac{\frac{3}{2} t}{1 - \cos(t)} \cdot \frac{dt}{t} = \frac{3}{2} \int_{\frac{\pi}{3}}^{\frac{2\pi}{3}} \frac{1}{1 - \cos(t)} \, dt. \] ### Step 4: Simplify the Integral Using the identity \( 1 - \cos(t) = 2 \sin^2\left(\frac{t}{2}\right) \): \[ \frac{3}{2} \int_{\frac{\pi}{3}}^{\frac{2\pi}{3}} \frac{1}{1 - \cos(t)} \, dt = \frac{3}{2} \int_{\frac{\pi}{3}}^{\frac{2\pi}{3}} \frac{1}{2 \sin^2\left(\frac{t}{2}\right)} \, dt = \frac{3}{4} \int_{\frac{\pi}{3}}^{\frac{2\pi}{3}} \csc^2\left(\frac{t}{2}\right) \, dt. \] ### Step 5: Further Change of Variables Let \( u = \frac{t}{2} \), then \( dt = 2 du \). The limits change accordingly: - When \( t = \frac{\pi}{3} \), \( u = \frac{\pi}{6} \). - When \( t = \frac{2\pi}{3} \), \( u = \frac{\pi}{3} \). Thus, the integral becomes: \[ \frac{3}{4} \cdot 2 \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \csc^2(u) \, du = \frac{3}{2} \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \csc^2(u) \, du. \] ### Step 6: Evaluate the Integral The integral of \( \csc^2(u) \) is \( -\cot(u) \): \[ \frac{3}{2} \left[-\cot(u)\right]_{\frac{\pi}{6}}^{\frac{\pi}{3}} = \frac{3}{2} \left[-\cot\left(\frac{\pi}{3}\right) + \cot\left(\frac{\pi}{6}\right)\right]. \] Calculating the cotangent values: \[ -\cot\left(\frac{\pi}{3}\right) = -\frac{1}{\sqrt{3}}, \quad \cot\left(\frac{\pi}{6}\right) = \sqrt{3}. \] Thus, we have: \[ \frac{3}{2} \left[-\frac{1}{\sqrt{3}} + \sqrt{3}\right] = \frac{3}{2} \left[\sqrt{3} - \frac{1}{\sqrt{3}}\right] = \frac{3}{2} \left[\frac{3}{\sqrt{3}} - \frac{1}{\sqrt{3}}\right] = \frac{3}{2} \cdot \frac{2}{\sqrt{3}} = \sqrt{3}. \] ### Final Answer The value of the integral is \[ \sqrt{3}. \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 1|64 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 1 Part-II|75 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise High Level Problem|26 Videos
  • COMBINATORICS

    RESONANCE ENGLISH|Exercise Exercise-2 (Part-II: Previously Asked Question of RMO)|5 Videos
  • DPP

    RESONANCE ENGLISH|Exercise QUESTION|656 Videos

Similar Questions

Explore conceptually related problems

int x^3 e^(x^2) dx is equal to

int(2)/( (e^(x) + e^(-x))^(2)) dx is equal to

int (x+3)/(x+4)^(2)e^(x)\ dx is equal to

int cos (log_e x)dx is equal to

int(x+1)^(2)e^(x)dx is equal to

int_(-3)^(3)(x^(2))/((x^(2)+3)(1+e^(x)))dx is equal to

int(x^2e^(x))/((x+2)^(2))dx is equal to

The value of int_(log1//2)^(log2)sin{(e^(x)-1)/(e^(x)+1)}dx is equal to

If int_(0)^(1) (e^(x))/( 1+x) dx = k , then int_(0)^(1) (e^(x))/( (1+x)^(2)) dx is equal to

I=int_(0)^(2)(e^(f(x)))/(e^(f(x))+e^(f(2-x)))dx is equal to

RESONANCE ENGLISH-DEFINITE INTEGRATION & ITS APPLICATION -Self practive problem
  1. The value of the integral int(0)^(1)(dx)/(x^(2)+2x cos alpha +1),0ltal...

    Text Solution

    |

  2. If f(x)={{:(x,xlt1),(x-1,xge1):}, then underset(0)overset(2)intx^(2)f(...

    Text Solution

    |

  3. If f(0) = 1 , f(2) = 3, f'(2) = 5 and f'(0) is finite, then int(0)^(1...

    Text Solution

    |

  4. int(0)^(pi)|1+2cosx| dx is equal to :

    Text Solution

    |

  5. The value of int(1)^(3) (|x-2|+[x])dx is ([x] stands for greatest inte...

    Text Solution

    |

  6. The value of int(0)^(infty)[2e^(-x)] dx (where ,[.] denotes the greate...

    Text Solution

    |

  7. int(lnpi-ln2)^(lnpi) (e^(x))/(1-cos(2/3e^(x))) dx is equal to

    Text Solution

    |

  8. If I(1)=int(e)^(e^(2))(dx)/(lnx) and I(2) = int(1)^(2)(e^(x))/(x) dx(1...

    Text Solution

    |

  9. int(0)^(pi/4)(x.sinx)/(cos^(3)x) dx equal to :

    Text Solution

    |

  10. The value if definite integral int(3/2)^(9/4)[sqrt(2x-sqrt(5(4x-5)))+s...

    Text Solution

    |

  11. Ifint(log2)^x(dx)/(sqrt(e^x-1))=pi/6,"then " x " is equal to" (a)4 ...

    Text Solution

    |

  12. int(0)^(oo)(x^(2)+1)/(x^(4)+7x^(2)+1)dx=

    Text Solution

    |

  13. Suppose for every integer n, .int(n)^(n+1) f(x)dx = n^(2). The value o...

    Text Solution

    |

  14. If f(x) and g(x) are continuous functions, then int(In lamda)^(In (1//...

    Text Solution

    |

  15. int- 1^1cot^(- 1)((x+x^3)/(1+x^4))dx

    Text Solution

    |

  16. int(-2)^(0){x^(3)+3x^(2)+3x+3+(x+1)cos(x+1)} dx is equal to

    Text Solution

    |

  17. int(-1)^(1)xln(1+e^(x))dx=.

    Text Solution

    |

  18. If int(-1)^(3//2)|xsinpix|dx = (k)/(pi^(2)), then the value of k is :

    Text Solution

    |

  19. The value of definite integral int0^(pi^2/4) dx/(1+sin sqrtx+ cos sqrt...

    Text Solution

    |

  20. int(2-ln3)^(3+ln3)(ln(4+x))/(ln(4+x)+ln(9-x))dx is equal to :

    Text Solution

    |