Home
Class 12
MATHS
int(0)^(pi/4)(x.sinx)/(cos^(3)x) dx equa...

`int_(0)^(pi/4)(x.sinx)/(cos^(3)x)` dx equal to :

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{\frac{\pi}{4}} \frac{x \sin x}{\cos^3 x} \, dx \), we can use integration by parts. ### Step-by-Step Solution: 1. **Identify the parts for integration by parts**: Let \( u = x \) and \( dv = \frac{\sin x}{\cos^3 x} \, dx \). Then, we differentiate and integrate respectively: \[ du = dx \quad \text{and} \quad v = \int \frac{\sin x}{\cos^3 x} \, dx. \] 2. **Evaluate \( v \)**: To find \( v \), we can use the substitution \( t = \cos x \). Then, \( dt = -\sin x \, dx \) or \( \sin x \, dx = -dt \). The limits change as follows: - When \( x = 0 \), \( t = \cos(0) = 1 \). - When \( x = \frac{\pi}{4} \), \( t = \cos\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}} \). Thus, we have: \[ v = \int \frac{\sin x}{\cos^3 x} \, dx = \int \frac{-dt}{t^3} = \int -t^{-3} \, dt = \frac{1}{2} t^{-2} + C = \frac{1}{2 \cos^2 x} + C. \] 3. **Apply integration by parts**: Using the integration by parts formula \( I = uv - \int v \, du \): \[ I = x \cdot \frac{1}{2 \cos^2 x} \bigg|_{0}^{\frac{\pi}{4}} - \int \frac{1}{2 \cos^2 x} \, dx. \] 4. **Evaluate the first term**: Calculate \( x \cdot \frac{1}{2 \cos^2 x} \) at the limits: - At \( x = \frac{\pi}{4} \): \[ \frac{\pi}{4} \cdot \frac{1}{2 \left(\frac{1}{\sqrt{2}}\right)^2} = \frac{\pi}{4} \cdot \frac{1}{2 \cdot \frac{1}{2}} = \frac{\pi}{4} \cdot 1 = \frac{\pi}{4}. \] - At \( x = 0 \): \[ 0 \cdot \frac{1}{2 \cos^2(0)} = 0. \] Therefore, the first term evaluates to \( \frac{\pi}{4} - 0 = \frac{\pi}{4} \). 5. **Evaluate the second integral**: Now we need to evaluate \( \int \frac{1}{2 \cos^2 x} \, dx \): \[ \int \frac{1}{2 \cos^2 x} \, dx = \frac{1}{2} \int \sec^2 x \, dx = \frac{1}{2} \tan x \bigg|_{0}^{\frac{\pi}{4}}. \] Evaluating this gives: - At \( x = \frac{\pi}{4} \): \[ \tan\left(\frac{\pi}{4}\right) = 1. \] - At \( x = 0 \): \[ \tan(0) = 0. \] Thus, this evaluates to \( \frac{1}{2} (1 - 0) = \frac{1}{2} \). 6. **Combine results**: Putting it all together: \[ I = \frac{\pi}{4} - \frac{1}{2}. \] ### Final Answer: \[ I = \frac{\pi}{4} - \frac{1}{2}. \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 1|64 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 1 Part-II|75 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise High Level Problem|26 Videos
  • COMBINATORICS

    RESONANCE ENGLISH|Exercise Exercise-2 (Part-II: Previously Asked Question of RMO)|5 Videos
  • DPP

    RESONANCE ENGLISH|Exercise QUESTION|656 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi/2) (sinx)/(1+cos^(2)x)dx

The value of int_(0)^(2 pi)(sin^(2)x-cos^(4)x)dx is equal to pi/k then k

int_(0)^( pi/4)(dx)/(1+cos x)

int_(0)^(pi) xsin x cos^(4)x dx=

int_(0)^(pi//4)(dx)/((1+cos2x))

int_(0)^( pi)(dx)/(1+cos x)

int_0^(pi//2)(sinx)/(sin x+cos x)dx equals to a. pi//2 b. pi//4 c. pi//3 d. pi

int_(0)^(pi//4) sinx(x) =?

int(sinx)/(3+4cos^(2)x)dx

The value of the definite integral int_0^(pi/2) ((1+sin3x)/(1+2sinx)) dx equals to

RESONANCE ENGLISH-DEFINITE INTEGRATION & ITS APPLICATION -Self practive problem
  1. The value of the integral int(0)^(1)(dx)/(x^(2)+2x cos alpha +1),0ltal...

    Text Solution

    |

  2. If f(x)={{:(x,xlt1),(x-1,xge1):}, then underset(0)overset(2)intx^(2)f(...

    Text Solution

    |

  3. If f(0) = 1 , f(2) = 3, f'(2) = 5 and f'(0) is finite, then int(0)^(1...

    Text Solution

    |

  4. int(0)^(pi)|1+2cosx| dx is equal to :

    Text Solution

    |

  5. The value of int(1)^(3) (|x-2|+[x])dx is ([x] stands for greatest inte...

    Text Solution

    |

  6. The value of int(0)^(infty)[2e^(-x)] dx (where ,[.] denotes the greate...

    Text Solution

    |

  7. int(lnpi-ln2)^(lnpi) (e^(x))/(1-cos(2/3e^(x))) dx is equal to

    Text Solution

    |

  8. If I(1)=int(e)^(e^(2))(dx)/(lnx) and I(2) = int(1)^(2)(e^(x))/(x) dx(1...

    Text Solution

    |

  9. int(0)^(pi/4)(x.sinx)/(cos^(3)x) dx equal to :

    Text Solution

    |

  10. The value if definite integral int(3/2)^(9/4)[sqrt(2x-sqrt(5(4x-5)))+s...

    Text Solution

    |

  11. Ifint(log2)^x(dx)/(sqrt(e^x-1))=pi/6,"then " x " is equal to" (a)4 ...

    Text Solution

    |

  12. int(0)^(oo)(x^(2)+1)/(x^(4)+7x^(2)+1)dx=

    Text Solution

    |

  13. Suppose for every integer n, .int(n)^(n+1) f(x)dx = n^(2). The value o...

    Text Solution

    |

  14. If f(x) and g(x) are continuous functions, then int(In lamda)^(In (1//...

    Text Solution

    |

  15. int- 1^1cot^(- 1)((x+x^3)/(1+x^4))dx

    Text Solution

    |

  16. int(-2)^(0){x^(3)+3x^(2)+3x+3+(x+1)cos(x+1)} dx is equal to

    Text Solution

    |

  17. int(-1)^(1)xln(1+e^(x))dx=.

    Text Solution

    |

  18. If int(-1)^(3//2)|xsinpix|dx = (k)/(pi^(2)), then the value of k is :

    Text Solution

    |

  19. The value of definite integral int0^(pi^2/4) dx/(1+sin sqrtx+ cos sqrt...

    Text Solution

    |

  20. int(2-ln3)^(3+ln3)(ln(4+x))/(ln(4+x)+ln(9-x))dx is equal to :

    Text Solution

    |