Home
Class 12
MATHS
The value if definite integral int(3/2)^...

The value if definite integral `int_(3/2)^(9/4)[sqrt(2x-sqrt(5(4x-5)))+sqrt(2x+sqrt(5(4x-5)))]` dx is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the definite integral \[ I = \int_{\frac{3}{2}}^{\frac{9}{4}} \left[\sqrt{2x - \sqrt{5(4x - 5)}} + \sqrt{2x + \sqrt{5(4x - 5)}}\right] dx, \] we will follow these steps: ### Step 1: Simplify the Expression Inside the Integral We start by rewriting the expression under the integral. Notice that: \[ \sqrt{5(4x - 5)} = \sqrt{20x - 25}. \] Thus, we can rewrite the integral as: \[ I = \int_{\frac{3}{2}}^{\frac{9}{4}} \left[\sqrt{2x - \sqrt{20x - 25}} + \sqrt{2x + \sqrt{20x - 25}}\right] dx. \] ### Step 2: Substitution Let us make the substitution: \[ t^2 = 5(4x - 5). \] This implies: \[ 4x - 5 = \frac{t^2}{5} \implies 4x = \frac{t^2}{5} + 5 \implies x = \frac{t^2 + 25}{20}. \] Now, differentiate both sides to find \(dx\): \[ dx = \frac{1}{20} \cdot 2t \, dt = \frac{t}{10} \, dt. \] ### Step 3: Change the Limits of Integration Next, we need to change the limits of integration. 1. For \(x = \frac{3}{2}\): \[ t^2 = 5(4 \cdot \frac{3}{2} - 5) = 5(6 - 5) = 5 \implies t = \sqrt{5}. \] 2. For \(x = \frac{9}{4}\): \[ t^2 = 5(4 \cdot \frac{9}{4} - 5) = 5(9 - 5) = 20 \implies t = \sqrt{20} = 2\sqrt{5}. \] Thus, the new limits are from \(\sqrt{5}\) to \(2\sqrt{5}\). ### Step 4: Substitute Back into the Integral Now substituting \(x\) and \(dx\) into the integral, we have: \[ I = \int_{\sqrt{5}}^{2\sqrt{5}} \left[\sqrt{2\left(\frac{t^2 + 25}{20}\right) - t} + \sqrt{2\left(\frac{t^2 + 25}{20}\right) + t}\right] \cdot \frac{t}{10} \, dt. \] ### Step 5: Simplify the Integral Now we simplify the expression inside the integral: \[ 2\left(\frac{t^2 + 25}{20}\right) = \frac{t^2 + 25}{10}. \] Thus, we have: \[ I = \int_{\sqrt{5}}^{2\sqrt{5}} \left[\sqrt{\frac{t^2 + 25 - 10t}{10}} + \sqrt{\frac{t^2 + 25 + 10t}{10}}\right] \cdot \frac{t}{10} \, dt. \] ### Step 6: Further Simplification This can be simplified to: \[ I = \frac{1}{10} \int_{\sqrt{5}}^{2\sqrt{5}} \left[\sqrt{(t - 5)^2} + \sqrt{(t + 5)^2}\right] \cdot t \, dt. \] ### Step 7: Evaluate the Integral Now, we can evaluate the integral: 1. \(\sqrt{(t - 5)^2} = |t - 5|\) and \(\sqrt{(t + 5)^2} = |t + 5|\). 2. For \(t\) in \([\sqrt{5}, 2\sqrt{5}]\), \(t - 5\) is negative and \(t + 5\) is positive. Thus, we have: \[ I = \frac{1}{10} \int_{\sqrt{5}}^{2\sqrt{5}} \left[-(t - 5) + (t + 5)\right] t \, dt = \frac{1}{10} \int_{\sqrt{5}}^{2\sqrt{5}} 10t \, dt. \] ### Step 8: Final Calculation Now we compute: \[ I = \int_{\sqrt{5}}^{2\sqrt{5}} t \, dt = \left[\frac{t^2}{2}\right]_{\sqrt{5}}^{2\sqrt{5}} = \frac{(2\sqrt{5})^2}{2} - \frac{(\sqrt{5})^2}{2} = \frac{20}{2} - \frac{5}{2} = \frac{15}{2}. \] Thus, \[ I = \frac{1}{10} \cdot 15 = \frac{3}{2}. \] ### Final Answer The value of the definite integral is: \[ \boxed{\frac{3}{2}}. \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 1|64 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 1 Part-II|75 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise High Level Problem|26 Videos
  • COMBINATORICS

    RESONANCE ENGLISH|Exercise Exercise-2 (Part-II: Previously Asked Question of RMO)|5 Videos
  • DPP

    RESONANCE ENGLISH|Exercise QUESTION|656 Videos

Similar Questions

Explore conceptually related problems

The value of the integral int_(2)^(4) (sqrt(x^(2)-4))/(x^(4))dx is

I=int_(2)^(3)(sqrt(x))/(sqrt(5-x)+sqrt(x))dx

Find the domain of f(x)=sqrt(x-4-2sqrt((x-5)))-sqrt(x-4+2sqrt((x-5)))

The value of the definite integral int_(0)^(2) (sqrt(1+x ^(3))+""^(3) sqrt(x ^(2)+ 2x)) dx is :

Evaluate the following definite integral: int_0^4 1/(sqrt(4x-x^2))dx

Evaluate the definite integrals int_1^2(4x^3-5x^2+6x+9)dx

Evaluate the definite integrals int1 2(4x^3-5x^2+6x+9)dx

Evaluate the following definite integral: int_1^4(x^2+x)/(sqrt(2x+1))dx

2. int_(0)^(5)(sqrt(x))/(sqrt(x)+sqrt(5-x))dx

int(sqrt(2+x^(2))-sqrt(2-x^(2)))/(sqrt(4-x^(4)))dx

RESONANCE ENGLISH-DEFINITE INTEGRATION & ITS APPLICATION -Self practive problem
  1. The value of the integral int(0)^(1)(dx)/(x^(2)+2x cos alpha +1),0ltal...

    Text Solution

    |

  2. If f(x)={{:(x,xlt1),(x-1,xge1):}, then underset(0)overset(2)intx^(2)f(...

    Text Solution

    |

  3. If f(0) = 1 , f(2) = 3, f'(2) = 5 and f'(0) is finite, then int(0)^(1...

    Text Solution

    |

  4. int(0)^(pi)|1+2cosx| dx is equal to :

    Text Solution

    |

  5. The value of int(1)^(3) (|x-2|+[x])dx is ([x] stands for greatest inte...

    Text Solution

    |

  6. The value of int(0)^(infty)[2e^(-x)] dx (where ,[.] denotes the greate...

    Text Solution

    |

  7. int(lnpi-ln2)^(lnpi) (e^(x))/(1-cos(2/3e^(x))) dx is equal to

    Text Solution

    |

  8. If I(1)=int(e)^(e^(2))(dx)/(lnx) and I(2) = int(1)^(2)(e^(x))/(x) dx(1...

    Text Solution

    |

  9. int(0)^(pi/4)(x.sinx)/(cos^(3)x) dx equal to :

    Text Solution

    |

  10. The value if definite integral int(3/2)^(9/4)[sqrt(2x-sqrt(5(4x-5)))+s...

    Text Solution

    |

  11. Ifint(log2)^x(dx)/(sqrt(e^x-1))=pi/6,"then " x " is equal to" (a)4 ...

    Text Solution

    |

  12. int(0)^(oo)(x^(2)+1)/(x^(4)+7x^(2)+1)dx=

    Text Solution

    |

  13. Suppose for every integer n, .int(n)^(n+1) f(x)dx = n^(2). The value o...

    Text Solution

    |

  14. If f(x) and g(x) are continuous functions, then int(In lamda)^(In (1//...

    Text Solution

    |

  15. int- 1^1cot^(- 1)((x+x^3)/(1+x^4))dx

    Text Solution

    |

  16. int(-2)^(0){x^(3)+3x^(2)+3x+3+(x+1)cos(x+1)} dx is equal to

    Text Solution

    |

  17. int(-1)^(1)xln(1+e^(x))dx=.

    Text Solution

    |

  18. If int(-1)^(3//2)|xsinpix|dx = (k)/(pi^(2)), then the value of k is :

    Text Solution

    |

  19. The value of definite integral int0^(pi^2/4) dx/(1+sin sqrtx+ cos sqrt...

    Text Solution

    |

  20. int(2-ln3)^(3+ln3)(ln(4+x))/(ln(4+x)+ln(9-x))dx is equal to :

    Text Solution

    |