Home
Class 12
MATHS
int(0)^(oo)(x^(2)+1)/(x^(4)+7x^(2)+1)dx=...

`int_(0)^(oo)(x^(2)+1)/(x^(4)+7x^(2)+1)dx=`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{0}^{\infty} \frac{x^2 + 1}{x^4 + 7x^2 + 1} \, dx, \] we will follow these steps: ### Step 1: Simplify the Integral We start by rewriting the integral in a more manageable form. We can factor out \(x^2\) from both the numerator and the denominator: \[ I = \int_{0}^{\infty} \frac{x^2(1 + \frac{1}{x^2})}{x^2(x^2 + 7 + \frac{1}{x^2})} \, dx. \] This simplifies to: \[ I = \int_{0}^{\infty} \frac{1 + \frac{1}{x^2}}{x^2 + 7 + \frac{1}{x^2}} \, dx. \] ### Step 2: Rewrite the Denominator Next, we can rewrite the denominator: \[ x^2 + 7 + \frac{1}{x^2} = \left(x - \frac{1}{x}\right)^2 + 9. \] This gives us: \[ I = \int_{0}^{\infty} \frac{1 + \frac{1}{x^2}}{\left(x - \frac{1}{x}\right)^2 + 9} \, dx. \] ### Step 3: Change of Variables Now, we will perform a substitution. Let: \[ t = x - \frac{1}{x}. \] Differentiating gives us: \[ dt = \left(1 + \frac{1}{x^2}\right) dx. \] Thus, we can rewrite the integral as: \[ I = \int_{-\infty}^{\infty} \frac{1}{t^2 + 9} \, dt. \] ### Step 4: Evaluate the Integral The integral \[ \int \frac{1}{t^2 + a^2} \, dt = \frac{1}{a} \tan^{-1}\left(\frac{t}{a}\right) + C. \] In our case, \(a = 3\): \[ I = \frac{1}{3} \left[ \tan^{-1}\left(\frac{t}{3}\right) \right]_{-\infty}^{\infty}. \] ### Step 5: Compute the Limits Now we compute the limits: - As \(t \to \infty\), \(\tan^{-1}\left(\frac{t}{3}\right) \to \frac{\pi}{2}\). - As \(t \to -\infty\), \(\tan^{-1}\left(\frac{t}{3}\right) \to -\frac{\pi}{2}\). Thus, \[ I = \frac{1}{3} \left( \frac{\pi}{2} - \left(-\frac{\pi}{2}\right) \right) = \frac{1}{3} \cdot \pi = \frac{\pi}{3}. \] ### Final Answer Therefore, the value of the integral is: \[ \boxed{\frac{\pi}{3}}. \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 1|64 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 1 Part-II|75 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise High Level Problem|26 Videos
  • COMBINATORICS

    RESONANCE ENGLISH|Exercise Exercise-2 (Part-II: Previously Asked Question of RMO)|5 Videos
  • DPP

    RESONANCE ENGLISH|Exercise QUESTION|656 Videos

Similar Questions

Explore conceptually related problems

If int _(0)^(oo) (x ^(3))/((a ^(2)+ x ^(2)))dx = (1)/(ka ^(6)), then find the value of k/8.

The value of the integral I=int_(1)^(oo) (x^(2)-2)/(x^(3)sqrt(x^(2)-1))dx , is

int_(0)^(oo)((tan^(-1)x)/((1+x^(2))))dx

int_(0)^(1)(2x)/((1+x^(4)))dx

int_(0)^(2) (1)/(4+x+x^(2))dx

The value of int_(0)^(oo)(logx)/(a^(2)+x^(2))dx is

1. int_(0)^(oo)e^(-x/2)dx

int((x^2+1))/(x^4+7x^2+1)dx=

int_(0)^(1) (1)/(x^(2) +2x+3)dx

Prove that int_(0)^(oo) (sin^(2)x)/(x^(2))dx=int_(0)^(oo) (sinx)x dx

RESONANCE ENGLISH-DEFINITE INTEGRATION & ITS APPLICATION -Self practive problem
  1. The value of the integral int(0)^(1)(dx)/(x^(2)+2x cos alpha +1),0ltal...

    Text Solution

    |

  2. If f(x)={{:(x,xlt1),(x-1,xge1):}, then underset(0)overset(2)intx^(2)f(...

    Text Solution

    |

  3. If f(0) = 1 , f(2) = 3, f'(2) = 5 and f'(0) is finite, then int(0)^(1...

    Text Solution

    |

  4. int(0)^(pi)|1+2cosx| dx is equal to :

    Text Solution

    |

  5. The value of int(1)^(3) (|x-2|+[x])dx is ([x] stands for greatest inte...

    Text Solution

    |

  6. The value of int(0)^(infty)[2e^(-x)] dx (where ,[.] denotes the greate...

    Text Solution

    |

  7. int(lnpi-ln2)^(lnpi) (e^(x))/(1-cos(2/3e^(x))) dx is equal to

    Text Solution

    |

  8. If I(1)=int(e)^(e^(2))(dx)/(lnx) and I(2) = int(1)^(2)(e^(x))/(x) dx(1...

    Text Solution

    |

  9. int(0)^(pi/4)(x.sinx)/(cos^(3)x) dx equal to :

    Text Solution

    |

  10. The value if definite integral int(3/2)^(9/4)[sqrt(2x-sqrt(5(4x-5)))+s...

    Text Solution

    |

  11. Ifint(log2)^x(dx)/(sqrt(e^x-1))=pi/6,"then " x " is equal to" (a)4 ...

    Text Solution

    |

  12. int(0)^(oo)(x^(2)+1)/(x^(4)+7x^(2)+1)dx=

    Text Solution

    |

  13. Suppose for every integer n, .int(n)^(n+1) f(x)dx = n^(2). The value o...

    Text Solution

    |

  14. If f(x) and g(x) are continuous functions, then int(In lamda)^(In (1//...

    Text Solution

    |

  15. int- 1^1cot^(- 1)((x+x^3)/(1+x^4))dx

    Text Solution

    |

  16. int(-2)^(0){x^(3)+3x^(2)+3x+3+(x+1)cos(x+1)} dx is equal to

    Text Solution

    |

  17. int(-1)^(1)xln(1+e^(x))dx=.

    Text Solution

    |

  18. If int(-1)^(3//2)|xsinpix|dx = (k)/(pi^(2)), then the value of k is :

    Text Solution

    |

  19. The value of definite integral int0^(pi^2/4) dx/(1+sin sqrtx+ cos sqrt...

    Text Solution

    |

  20. int(2-ln3)^(3+ln3)(ln(4+x))/(ln(4+x)+ln(9-x))dx is equal to :

    Text Solution

    |