Home
Class 12
MATHS
int(-2)^(0){x^(3)+3x^(2)+3x+3+(x+1)cos(x...

`int_(-2)^(0){x^(3)+3x^(2)+3x+3+(x+1)cos(x+1)} dx` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int_{-2}^{0} \left( x^3 + 3x^2 + 3x + 3 + (x+1) \cos(x+1) \right) dx, \] we can follow these steps: ### Step 1: Simplify the integrand Notice that the polynomial part \(x^3 + 3x^2 + 3x + 3\) can be rewritten. We can express the polynomial as: \[ x^3 + 3x^2 + 3x + 3 = (x+1)^3 + 2. \] This is because: \[ (x+1)^3 = x^3 + 3x^2 + 3x + 1. \] So, we can rewrite the integral as: \[ \int_{-2}^{0} \left( (x+1)^3 + 2 + (x+1) \cos(x+1) \right) dx. \] ### Step 2: Change of variable Let \(t = x + 1\). Then, \(x = t - 1\) and when \(x = -2\), \(t = -1\), and when \(x = 0\), \(t = 1\). The differential \(dx\) becomes \(dt\). Thus, the integral transforms to: \[ \int_{-1}^{1} \left( t^3 + 2 + t \cos t \right) dt. \] ### Step 3: Split the integral Now, we can split the integral into three parts: \[ \int_{-1}^{1} t^3 dt + \int_{-1}^{1} 2 dt + \int_{-1}^{1} t \cos t dt. \] ### Step 4: Evaluate each part 1. **Evaluate \( \int_{-1}^{1} t^3 dt \)**: Since \(t^3\) is an odd function, the integral over a symmetric interval around zero is zero: \[ \int_{-1}^{1} t^3 dt = 0. \] 2. **Evaluate \( \int_{-1}^{1} 2 dt \)**: This integral is straightforward: \[ \int_{-1}^{1} 2 dt = 2 \times (1 - (-1)) = 2 \times 2 = 4. \] 3. **Evaluate \( \int_{-1}^{1} t \cos t dt \)**: Since \(t \cos t\) is also an odd function, the integral over a symmetric interval around zero is zero: \[ \int_{-1}^{1} t \cos t dt = 0. \] ### Step 5: Combine the results Now, combining all the results: \[ \int_{-1}^{1} t^3 dt + \int_{-1}^{1} 2 dt + \int_{-1}^{1} t \cos t dt = 0 + 4 + 0 = 4. \] Thus, the value of the original integral is \[ \boxed{4}. \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 1|64 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 1 Part-II|75 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise High Level Problem|26 Videos
  • COMBINATORICS

    RESONANCE ENGLISH|Exercise Exercise-2 (Part-II: Previously Asked Question of RMO)|5 Videos
  • DPP

    RESONANCE ENGLISH|Exercise QUESTION|656 Videos

Similar Questions

Explore conceptually related problems

int(x^(3))/(x+1)dx is equal to

int_(0)^(3)(x^(2)+1)dx

1. int_(0)^(2)3x^(2)dx

The value of int _(0)^(1) ((x ^(6) -x ^(3)))/((2x ^(3)+1)^(3)) dx is equal to :

The value of int_(-1)^(1)(sin^(-1)x+(x^(5)+x^(3)-1)/(cos^(2)x))dx is equal to

int(x+2)/((x^(2)+3x+3)sqrt(x+1))dx " is equal to"

int_(-3)^(3)(x^(2))/((x^(2)+3)(1+e^(x)))dx is equal to

int_(0)^(1) (1)/(x^(2) +2x+3)dx

int_(lnpi-ln2)^(lnpi) (e^(x))/(1-cos(2/3e^(x))) dx is equal to

int_(1)^(9)(x^((3)/(2))+2x+3)dx

RESONANCE ENGLISH-DEFINITE INTEGRATION & ITS APPLICATION -Self practive problem
  1. The value of the integral int(0)^(1)(dx)/(x^(2)+2x cos alpha +1),0ltal...

    Text Solution

    |

  2. If f(x)={{:(x,xlt1),(x-1,xge1):}, then underset(0)overset(2)intx^(2)f(...

    Text Solution

    |

  3. If f(0) = 1 , f(2) = 3, f'(2) = 5 and f'(0) is finite, then int(0)^(1...

    Text Solution

    |

  4. int(0)^(pi)|1+2cosx| dx is equal to :

    Text Solution

    |

  5. The value of int(1)^(3) (|x-2|+[x])dx is ([x] stands for greatest inte...

    Text Solution

    |

  6. The value of int(0)^(infty)[2e^(-x)] dx (where ,[.] denotes the greate...

    Text Solution

    |

  7. int(lnpi-ln2)^(lnpi) (e^(x))/(1-cos(2/3e^(x))) dx is equal to

    Text Solution

    |

  8. If I(1)=int(e)^(e^(2))(dx)/(lnx) and I(2) = int(1)^(2)(e^(x))/(x) dx(1...

    Text Solution

    |

  9. int(0)^(pi/4)(x.sinx)/(cos^(3)x) dx equal to :

    Text Solution

    |

  10. The value if definite integral int(3/2)^(9/4)[sqrt(2x-sqrt(5(4x-5)))+s...

    Text Solution

    |

  11. Ifint(log2)^x(dx)/(sqrt(e^x-1))=pi/6,"then " x " is equal to" (a)4 ...

    Text Solution

    |

  12. int(0)^(oo)(x^(2)+1)/(x^(4)+7x^(2)+1)dx=

    Text Solution

    |

  13. Suppose for every integer n, .int(n)^(n+1) f(x)dx = n^(2). The value o...

    Text Solution

    |

  14. If f(x) and g(x) are continuous functions, then int(In lamda)^(In (1//...

    Text Solution

    |

  15. int- 1^1cot^(- 1)((x+x^3)/(1+x^4))dx

    Text Solution

    |

  16. int(-2)^(0){x^(3)+3x^(2)+3x+3+(x+1)cos(x+1)} dx is equal to

    Text Solution

    |

  17. int(-1)^(1)xln(1+e^(x))dx=.

    Text Solution

    |

  18. If int(-1)^(3//2)|xsinpix|dx = (k)/(pi^(2)), then the value of k is :

    Text Solution

    |

  19. The value of definite integral int0^(pi^2/4) dx/(1+sin sqrtx+ cos sqrt...

    Text Solution

    |

  20. int(2-ln3)^(3+ln3)(ln(4+x))/(ln(4+x)+ln(9-x))dx is equal to :

    Text Solution

    |