Home
Class 12
MATHS
If int(-1)^(3//2)|xsinpix|dx = (k)/(pi^(...

If `int_(-1)^(3//2)|xsinpix|dx = (k)/(pi^(2))`, then the value of k is :

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{-1}^{\frac{3}{2}} |x \sin(\pi x)| \, dx \) and express it in the form \( \frac{k}{\pi^2} \), we will follow these steps: ### Step 1: Split the Integral We need to identify the points where the expression inside the absolute value changes sign. The function \( x \sin(\pi x) \) changes sign at \( x = 0 \) and \( x = 1 \). Thus, we can split the integral into three parts: \[ \int_{-1}^{\frac{3}{2}} |x \sin(\pi x)| \, dx = \int_{-1}^{0} |x \sin(\pi x)| \, dx + \int_{0}^{1} |x \sin(\pi x)| \, dx + \int_{1}^{\frac{3}{2}} |x \sin(\pi x)| \, dx \] ### Step 2: Evaluate Each Integral 1. **For \( x \in [-1, 0] \)**: - Here, \( x \) is negative and \( \sin(\pi x) \) is also negative, thus \( |x \sin(\pi x)| = -x \sin(\pi x) \). \[ \int_{-1}^{0} |x \sin(\pi x)| \, dx = \int_{-1}^{0} -x \sin(\pi x) \, dx \] 2. **For \( x \in [0, 1] \)**: - Both \( x \) and \( \sin(\pi x) \) are positive, thus \( |x \sin(\pi x)| = x \sin(\pi x) \). \[ \int_{0}^{1} |x \sin(\pi x)| \, dx = \int_{0}^{1} x \sin(\pi x) \, dx \] 3. **For \( x \in [1, \frac{3}{2}] \)**: - Here, \( x \) is positive and \( \sin(\pi x) \) is negative, thus \( |x \sin(\pi x)| = -x \sin(\pi x) \). \[ \int_{1}^{\frac{3}{2}} |x \sin(\pi x)| \, dx = \int_{1}^{\frac{3}{2}} -x \sin(\pi x) \, dx \] ### Step 3: Combine the Integrals Now we can combine these integrals: \[ \int_{-1}^{\frac{3}{2}} |x \sin(\pi x)| \, dx = -\int_{-1}^{0} x \sin(\pi x) \, dx + \int_{0}^{1} x \sin(\pi x) \, dx - \int_{1}^{\frac{3}{2}} x \sin(\pi x) \, dx \] ### Step 4: Evaluate the Integral \( \int x \sin(\pi x) \, dx \) Using integration by parts: Let \( u = x \) and \( dv = \sin(\pi x) \, dx \). Then, \( du = dx \) and \( v = -\frac{1}{\pi} \cos(\pi x) \). Applying integration by parts: \[ \int x \sin(\pi x) \, dx = -\frac{x}{\pi} \cos(\pi x) + \frac{1}{\pi} \int \cos(\pi x) \, dx \] \[ = -\frac{x}{\pi} \cos(\pi x) + \frac{1}{\pi^2} \sin(\pi x) \] ### Step 5: Evaluate the Limits Now we need to evaluate the integral from the limits for each segment: 1. **From \(-1\) to \(0\)**: \[ \left[-\frac{x}{\pi} \cos(\pi x) + \frac{1}{\pi^2} \sin(\pi x)\right]_{-1}^{0} \] 2. **From \(0\) to \(1\)**: \[ \left[-\frac{x}{\pi} \cos(\pi x) + \frac{1}{\pi^2} \sin(\pi x)\right]_{0}^{1} \] 3. **From \(1\) to \(\frac{3}{2}\)**: \[ \left[-\frac{x}{\pi} \cos(\pi x) + \frac{1}{\pi^2} \sin(\pi x)\right]_{1}^{\frac{3}{2}} \] ### Step 6: Combine All Results After calculating each of these integrals and substituting the limits, we will sum them up to find the total value of the integral. ### Step 7: Find \( k \) Finally, we will express the result in the form \( \frac{k}{\pi^2} \) and identify the value of \( k \).
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 1|64 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 1 Part-II|75 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise High Level Problem|26 Videos
  • COMBINATORICS

    RESONANCE ENGLISH|Exercise Exercise-2 (Part-II: Previously Asked Question of RMO)|5 Videos
  • DPP

    RESONANCE ENGLISH|Exercise QUESTION|656 Videos

Similar Questions

Explore conceptually related problems

If int_(0)^(4pi)ln|13sinx+3sqrt3cosx|dx=kpiln7 , then the value of k is

Let d/(dx) (F(x))= e^(sinx)/x, x>0 . If int_1^4 2e^sin(x^2)/x dx = F(k)-F(1) , then possible value of k is:

If int x e^(kx^(2)) dx = ( 1)/( 4) e^(2x^(2)) + C , then the value of k is

Find the value of int_(-1)^(3/2)|xsinpix|dx

If int_(0)^(npi) f(cos^(2)x)dx=k int_(0)^(pi) f(cos^(2)x)dx , then the value of k, is

int_(-pi//2)^(pi//2) (|x|)/(8 cos^(2)2x+1)dx has the value

If= int_(0)^(pi//2) sin x . log (sin x ) dx = log ((K)/(e)). Then, the value of K is ….

If int( 2^(x))/( sqrt( 1- 4^(x))) dx = k sin^(-1) ( 2^(x)) + C , then the value of k is

If int _(0)^(oo) (x ^(3))/((a ^(2)+ x ^(2)))dx = (1)/(ka ^(6)), then find the value of k/8.

If int_(1/2)^2 1/x cosec^(101)(x-1/x)dx=k then the value of k is :

RESONANCE ENGLISH-DEFINITE INTEGRATION & ITS APPLICATION -Self practive problem
  1. The value of the integral int(0)^(1)(dx)/(x^(2)+2x cos alpha +1),0ltal...

    Text Solution

    |

  2. If f(x)={{:(x,xlt1),(x-1,xge1):}, then underset(0)overset(2)intx^(2)f(...

    Text Solution

    |

  3. If f(0) = 1 , f(2) = 3, f'(2) = 5 and f'(0) is finite, then int(0)^(1...

    Text Solution

    |

  4. int(0)^(pi)|1+2cosx| dx is equal to :

    Text Solution

    |

  5. The value of int(1)^(3) (|x-2|+[x])dx is ([x] stands for greatest inte...

    Text Solution

    |

  6. The value of int(0)^(infty)[2e^(-x)] dx (where ,[.] denotes the greate...

    Text Solution

    |

  7. int(lnpi-ln2)^(lnpi) (e^(x))/(1-cos(2/3e^(x))) dx is equal to

    Text Solution

    |

  8. If I(1)=int(e)^(e^(2))(dx)/(lnx) and I(2) = int(1)^(2)(e^(x))/(x) dx(1...

    Text Solution

    |

  9. int(0)^(pi/4)(x.sinx)/(cos^(3)x) dx equal to :

    Text Solution

    |

  10. The value if definite integral int(3/2)^(9/4)[sqrt(2x-sqrt(5(4x-5)))+s...

    Text Solution

    |

  11. Ifint(log2)^x(dx)/(sqrt(e^x-1))=pi/6,"then " x " is equal to" (a)4 ...

    Text Solution

    |

  12. int(0)^(oo)(x^(2)+1)/(x^(4)+7x^(2)+1)dx=

    Text Solution

    |

  13. Suppose for every integer n, .int(n)^(n+1) f(x)dx = n^(2). The value o...

    Text Solution

    |

  14. If f(x) and g(x) are continuous functions, then int(In lamda)^(In (1//...

    Text Solution

    |

  15. int- 1^1cot^(- 1)((x+x^3)/(1+x^4))dx

    Text Solution

    |

  16. int(-2)^(0){x^(3)+3x^(2)+3x+3+(x+1)cos(x+1)} dx is equal to

    Text Solution

    |

  17. int(-1)^(1)xln(1+e^(x))dx=.

    Text Solution

    |

  18. If int(-1)^(3//2)|xsinpix|dx = (k)/(pi^(2)), then the value of k is :

    Text Solution

    |

  19. The value of definite integral int0^(pi^2/4) dx/(1+sin sqrtx+ cos sqrt...

    Text Solution

    |

  20. int(2-ln3)^(3+ln3)(ln(4+x))/(ln(4+x)+ln(9-x))dx is equal to :

    Text Solution

    |