Home
Class 12
MATHS
The value of definite integral int0^(pi^...

The value of definite integral `int_0^(pi^2/4) dx/(1+sin sqrtx+ cos sqrtx)=` is

Text Solution

AI Generated Solution

The correct Answer is:
To solve the definite integral \[ I = \int_0^{\frac{\pi^2}{4}} \frac{dx}{1 + \sin(\sqrt{x}) + \cos(\sqrt{x})} \] we will perform a series of substitutions and manipulations. Let's go through the solution step by step. ### Step 1: Substitution Let \( t = \sqrt{x} \). Then, \( x = t^2 \) and \( dx = 2t \, dt \). The limits change as follows: - When \( x = 0 \), \( t = 0 \). - When \( x = \frac{\pi^2}{4} \), \( t = \frac{\pi}{2} \). Thus, the integral becomes: \[ I = \int_0^{\frac{\pi}{2}} \frac{2t \, dt}{1 + \sin(t) + \cos(t)} \] ### Step 2: Symmetry in the Integral Now, we will consider the integral \( I \) and another integral \( J \) defined as: \[ J = \int_0^{\frac{\pi}{2}} \frac{2\left(\frac{\pi}{2} - t\right) dt}{1 + \sin(t) + \cos(t)} \] This represents the same integral but with \( t \) replaced by \( \frac{\pi}{2} - t \). ### Step 3: Simplifying \( J \) Calculating \( J \): \[ J = \int_0^{\frac{\pi}{2}} \frac{2\left(\frac{\pi}{2} - t\right) dt}{1 + \sin(t) + \cos(t)} = \int_0^{\frac{\pi}{2}} \frac{\pi - 2t}{1 + \sin(t) + \cos(t)} dt \] ### Step 4: Adding \( I \) and \( J \) Now we add \( I \) and \( J \): \[ I + J = \int_0^{\frac{\pi}{2}} \frac{2t \, dt}{1 + \sin(t) + \cos(t)} + \int_0^{\frac{\pi}{2}} \frac{\pi - 2t \, dt}{1 + \sin(t) + \cos(t)} \] Combining these integrals gives: \[ I + J = \int_0^{\frac{\pi}{2}} \frac{\pi \, dt}{1 + \sin(t) + \cos(t)} \] ### Step 5: Finding \( I \) Since \( I = J \), we have: \[ 2I = \int_0^{\frac{\pi}{2}} \frac{\pi \, dt}{1 + \sin(t) + \cos(t)} \] Thus, \[ I = \frac{1}{2} \int_0^{\frac{\pi}{2}} \frac{\pi \, dt}{1 + \sin(t) + \cos(t)} \] ### Step 6: Evaluating the Integral Now we need to evaluate the integral: \[ \int_0^{\frac{\pi}{2}} \frac{dt}{1 + \sin(t) + \cos(t)} \] Using the identity \( 1 + \sin(t) + \cos(t) = 2 + 2\sin\left(\frac{t + \frac{\pi}{4}}{2}\right) \) and simplifying, we can find: \[ \int_0^{\frac{\pi}{2}} \frac{dt}{1 + \sin(t) + \cos(t)} = \frac{\pi}{2} \log(2) \] ### Final Result Thus, substituting back, we find: \[ I = \frac{1}{2} \cdot \frac{\pi}{2} \log(2) = \frac{\pi}{4} \log(2) \] ### Conclusion The value of the definite integral is: \[ \boxed{\frac{\pi}{4} \log(2)} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 1|64 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 1 Part-II|75 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise High Level Problem|26 Videos
  • COMBINATORICS

    RESONANCE ENGLISH|Exercise Exercise-2 (Part-II: Previously Asked Question of RMO)|5 Videos
  • DPP

    RESONANCE ENGLISH|Exercise QUESTION|656 Videos

Similar Questions

Explore conceptually related problems

The value of the definite integral, int_0^(pi/2) (sin5x)/sinx dx is

Evaluate the definite integrals int_0^(pi/4)(tanx)dx

Evaluate the definite integrals int_0^(pi/2) cos2xdx

The value of the definite integral int_0^(pi/2) (dx)/(tanx+cotx+cosecx+secx) is

Evaluate the definite integrals int0pi/4sin2xdx

Evaluate the definite integrals int_0^(pi/2)cos^2xdx

The value of the definite integral int_(0)^(pi//2)sin x sin 2x sin 3x dx is equal to

The value of the integral int_(0) ^(pi//2) sin ^3 x dx is :

The value of the integral int_(0)^(pi//2) sin^(6) x dx , is

Evaluate the definite integrals int_0^1 (dx)/(1-x^2)

RESONANCE ENGLISH-DEFINITE INTEGRATION & ITS APPLICATION -Self practive problem
  1. The value of the integral int(0)^(1)(dx)/(x^(2)+2x cos alpha +1),0ltal...

    Text Solution

    |

  2. If f(x)={{:(x,xlt1),(x-1,xge1):}, then underset(0)overset(2)intx^(2)f(...

    Text Solution

    |

  3. If f(0) = 1 , f(2) = 3, f'(2) = 5 and f'(0) is finite, then int(0)^(1...

    Text Solution

    |

  4. int(0)^(pi)|1+2cosx| dx is equal to :

    Text Solution

    |

  5. The value of int(1)^(3) (|x-2|+[x])dx is ([x] stands for greatest inte...

    Text Solution

    |

  6. The value of int(0)^(infty)[2e^(-x)] dx (where ,[.] denotes the greate...

    Text Solution

    |

  7. int(lnpi-ln2)^(lnpi) (e^(x))/(1-cos(2/3e^(x))) dx is equal to

    Text Solution

    |

  8. If I(1)=int(e)^(e^(2))(dx)/(lnx) and I(2) = int(1)^(2)(e^(x))/(x) dx(1...

    Text Solution

    |

  9. int(0)^(pi/4)(x.sinx)/(cos^(3)x) dx equal to :

    Text Solution

    |

  10. The value if definite integral int(3/2)^(9/4)[sqrt(2x-sqrt(5(4x-5)))+s...

    Text Solution

    |

  11. Ifint(log2)^x(dx)/(sqrt(e^x-1))=pi/6,"then " x " is equal to" (a)4 ...

    Text Solution

    |

  12. int(0)^(oo)(x^(2)+1)/(x^(4)+7x^(2)+1)dx=

    Text Solution

    |

  13. Suppose for every integer n, .int(n)^(n+1) f(x)dx = n^(2). The value o...

    Text Solution

    |

  14. If f(x) and g(x) are continuous functions, then int(In lamda)^(In (1//...

    Text Solution

    |

  15. int- 1^1cot^(- 1)((x+x^3)/(1+x^4))dx

    Text Solution

    |

  16. int(-2)^(0){x^(3)+3x^(2)+3x+3+(x+1)cos(x+1)} dx is equal to

    Text Solution

    |

  17. int(-1)^(1)xln(1+e^(x))dx=.

    Text Solution

    |

  18. If int(-1)^(3//2)|xsinpix|dx = (k)/(pi^(2)), then the value of k is :

    Text Solution

    |

  19. The value of definite integral int0^(pi^2/4) dx/(1+sin sqrtx+ cos sqrt...

    Text Solution

    |

  20. int(2-ln3)^(3+ln3)(ln(4+x))/(ln(4+x)+ln(9-x))dx is equal to :

    Text Solution

    |