Home
Class 12
MATHS
int(2-ln3)^(3+ln3)(ln(4+x))/(ln(4+x)+ln(...

`int_(2-ln3)^(3+ln3)(ln(4+x))/(ln(4+x)+ln(9-x))dx` is equal to :

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{2 - \ln 3}^{3 + \ln 3} \frac{\ln(4 + x)}{\ln(4 + x) + \ln(9 - x)} \, dx, \] we can use the property of definite integrals which states that: \[ \int_a^b f(x) \, dx = \int_a^b f(a + b - x) \, dx. \] ### Step 1: Identify the limits and the function Here, we have \( a = 2 - \ln 3 \) and \( b = 3 + \ln 3 \). The sum \( a + b \) is: \[ (2 - \ln 3) + (3 + \ln 3) = 5. \] ### Step 2: Apply the property Now, we apply the property to our integral: \[ I = \int_{2 - \ln 3}^{3 + \ln 3} \frac{\ln(4 + (5 - x))}{\ln(4 + (5 - x)) + \ln(9 - (5 - x))} \, dx. \] ### Step 3: Simplify the function Now simplify the expression inside the integral: \[ 4 + (5 - x) = 9 - x, \] \[ 9 - (5 - x) = 4 + x. \] Thus, we can rewrite the integral as: \[ I = \int_{2 - \ln 3}^{3 + \ln 3} \frac{\ln(9 - x)}{\ln(9 - x) + \ln(4 + x)} \, dx. \] ### Step 4: Set up the two equations Now we have two expressions for \( I \): 1. \( I = \int_{2 - \ln 3}^{3 + \ln 3} \frac{\ln(4 + x)}{\ln(4 + x) + \ln(9 - x)} \, dx \) (original) 2. \( I = \int_{2 - \ln 3}^{3 + \ln 3} \frac{\ln(9 - x)}{\ln(9 - x) + \ln(4 + x)} \, dx \) (transformed) ### Step 5: Add the two equations Adding these two equations gives: \[ 2I = \int_{2 - \ln 3}^{3 + \ln 3} \left( \frac{\ln(4 + x)}{\ln(4 + x) + \ln(9 - x)} + \frac{\ln(9 - x)}{\ln(9 - x) + \ln(4 + x)} \right) dx. \] ### Step 6: Simplify the integrand The sum of the fractions simplifies to: \[ \frac{\ln(4 + x) + \ln(9 - x)}{\ln(4 + x) + \ln(9 - x)} = 1. \] Thus, we have: \[ 2I = \int_{2 - \ln 3}^{3 + \ln 3} 1 \, dx. \] ### Step 7: Evaluate the integral Now we can evaluate the integral: \[ \int_{2 - \ln 3}^{3 + \ln 3} 1 \, dx = (3 + \ln 3) - (2 - \ln 3) = 3 + \ln 3 - 2 + \ln 3 = 1 + 2\ln 3. \] ### Step 8: Solve for \( I \) Now, we can solve for \( I \): \[ 2I = 1 + 2\ln 3 \implies I = \frac{1 + 2\ln 3}{2}. \] ### Final Answer Thus, the value of the integral is: \[ I = \frac{1}{2} + \ln 3. \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 1|64 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 1 Part-II|75 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise High Level Problem|26 Videos
  • COMBINATORICS

    RESONANCE ENGLISH|Exercise Exercise-2 (Part-II: Previously Asked Question of RMO)|5 Videos
  • DPP

    RESONANCE ENGLISH|Exercise QUESTION|656 Videos

Similar Questions

Explore conceptually related problems

int (x^(2)(1-"ln"x))/(("ln"^(4)x-x^(4))dx is equal to

inte^(3 log x ) (x^(4)+ 1) ^(-1) dx is equal to

int ( sin ( log x) + cos ( log x ) dx is equal to

The value of definite integral I=int_(ln((sqrt3)/(2)))^(ln((2)/(sqrt3)))ln.((2-tan^(7)x)/(2+tan^(7)x))dx is equal to

The value of int x log x (log x - 1) dx is equal to

int_(-4)^(4) log ((7-x )/(7+x)) dx=?

The value of int_(sqrt(ln2))^(sqrt(ln3))(xsinx^2)/(sinx^2+sin(ln6-x^2))dx is (A) 1/4 ln(3/2) (B) 1/2 ln(3/2) (C) ln(3/2) (D) 1/6ln(3/2)

int_(1)^(7)(log sqrt(x))/(log sqrt(8-x)+log sqrt(x))dx=

If 2x^((log)_4 3)+3^((log)_4x)=27 , then x is equal to

int( (log x)^(5) )/( x ) dx is equal to a) (log x^(6))/( 6) + C b) ( ( log x )^(6))/( 6) + C c) ((log x )^(6))/( 3x^(2)) + C d) none of these

RESONANCE ENGLISH-DEFINITE INTEGRATION & ITS APPLICATION -Self practive problem
  1. The value of the integral int(0)^(1)(dx)/(x^(2)+2x cos alpha +1),0ltal...

    Text Solution

    |

  2. If f(x)={{:(x,xlt1),(x-1,xge1):}, then underset(0)overset(2)intx^(2)f(...

    Text Solution

    |

  3. If f(0) = 1 , f(2) = 3, f'(2) = 5 and f'(0) is finite, then int(0)^(1...

    Text Solution

    |

  4. int(0)^(pi)|1+2cosx| dx is equal to :

    Text Solution

    |

  5. The value of int(1)^(3) (|x-2|+[x])dx is ([x] stands for greatest inte...

    Text Solution

    |

  6. The value of int(0)^(infty)[2e^(-x)] dx (where ,[.] denotes the greate...

    Text Solution

    |

  7. int(lnpi-ln2)^(lnpi) (e^(x))/(1-cos(2/3e^(x))) dx is equal to

    Text Solution

    |

  8. If I(1)=int(e)^(e^(2))(dx)/(lnx) and I(2) = int(1)^(2)(e^(x))/(x) dx(1...

    Text Solution

    |

  9. int(0)^(pi/4)(x.sinx)/(cos^(3)x) dx equal to :

    Text Solution

    |

  10. The value if definite integral int(3/2)^(9/4)[sqrt(2x-sqrt(5(4x-5)))+s...

    Text Solution

    |

  11. Ifint(log2)^x(dx)/(sqrt(e^x-1))=pi/6,"then " x " is equal to" (a)4 ...

    Text Solution

    |

  12. int(0)^(oo)(x^(2)+1)/(x^(4)+7x^(2)+1)dx=

    Text Solution

    |

  13. Suppose for every integer n, .int(n)^(n+1) f(x)dx = n^(2). The value o...

    Text Solution

    |

  14. If f(x) and g(x) are continuous functions, then int(In lamda)^(In (1//...

    Text Solution

    |

  15. int- 1^1cot^(- 1)((x+x^3)/(1+x^4))dx

    Text Solution

    |

  16. int(-2)^(0){x^(3)+3x^(2)+3x+3+(x+1)cos(x+1)} dx is equal to

    Text Solution

    |

  17. int(-1)^(1)xln(1+e^(x))dx=.

    Text Solution

    |

  18. If int(-1)^(3//2)|xsinpix|dx = (k)/(pi^(2)), then the value of k is :

    Text Solution

    |

  19. The value of definite integral int0^(pi^2/4) dx/(1+sin sqrtx+ cos sqrt...

    Text Solution

    |

  20. int(2-ln3)^(3+ln3)(ln(4+x))/(ln(4+x)+ln(9-x))dx is equal to :

    Text Solution

    |