Home
Class 12
MATHS
The value of the definite integral I = i...

The value of the definite integral `I = int_(0)^(pi)xsqrt(1+|cosx|)` dx is equal to (A) `2sqrt(2)pi` (B) `sqrt(2) pi` (C) `2 pi` (D) `4 pi`

A

`2sqrt(2)pi`

B

`sqrt(2) pi`

C

`2 pi`

D

`4 pi`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the definite integral \( I = \int_{0}^{\pi} x \sqrt{1 + |\cos x|} \, dx \), we will break it into two parts due to the absolute value of the cosine function. ### Step 1: Splitting the Integral The cosine function changes its sign in the interval \([0, \pi]\): - From \(0\) to \(\frac{\pi}{2}\), \(\cos x\) is positive, so \(|\cos x| = \cos x\). - From \(\frac{\pi}{2}\) to \(\pi\), \(\cos x\) is negative, so \(|\cos x| = -\cos x\). Thus, we can split the integral as follows: \[ I = \int_{0}^{\frac{\pi}{2}} x \sqrt{1 + \cos x} \, dx + \int_{\frac{\pi}{2}}^{\pi} x \sqrt{1 - \cos x} \, dx \] ### Step 2: Simplifying the Integral Using the identity \(1 + \cos x = 2 \cos^2\left(\frac{x}{2}\right)\) and \(1 - \cos x = 2 \sin^2\left(\frac{x}{2}\right)\), we can rewrite the integrals: \[ I = \int_{0}^{\frac{\pi}{2}} x \sqrt{2 \cos^2\left(\frac{x}{2}\right)} \, dx + \int_{\frac{\pi}{2}}^{\pi} x \sqrt{2 \sin^2\left(\frac{x}{2}\right)} \, dx \] This simplifies to: \[ I = \sqrt{2} \int_{0}^{\frac{\pi}{2}} x \cos\left(\frac{x}{2}\right) \, dx + \sqrt{2} \int_{\frac{\pi}{2}}^{\pi} x \sin\left(\frac{x}{2}\right) \, dx \] ### Step 3: Using Integration by Parts We will apply integration by parts to both integrals. For the first integral, let: - \(u = x\) and \(dv = \cos\left(\frac{x}{2}\right) dx\) - Then, \(du = dx\) and \(v = 2 \sin\left(\frac{x}{2}\right)\) Using integration by parts: \[ \int u \, dv = uv - \int v \, du \] We get: \[ \int x \cos\left(\frac{x}{2}\right) \, dx = 2x \sin\left(\frac{x}{2}\right) - \int 2 \sin\left(\frac{x}{2}\right) \, dx \] The second integral can be computed as: \[ \int \sin\left(\frac{x}{2}\right) \, dx = -2 \cos\left(\frac{x}{2}\right) \] ### Step 4: Evaluating the Integrals Now we evaluate both integrals from \(0\) to \(\frac{\pi}{2}\) and from \(\frac{\pi}{2}\) to \(\pi\). For the first integral: \[ \int_{0}^{\frac{\pi}{2}} x \cos\left(\frac{x}{2}\right) \, dx = \left[2x \sin\left(\frac{x}{2}\right)\right]_{0}^{\frac{\pi}{2}} - \left[-4 \cos\left(\frac{x}{2}\right)\right]_{0}^{\frac{\pi}{2}} \] Calculating the limits, we find: \[ = 2 \cdot \frac{\pi}{2} \cdot 1 - 0 + 4(1 - 1) = \pi \] For the second integral: \[ \int_{\frac{\pi}{2}}^{\pi} x \sin\left(\frac{x}{2}\right) \, dx = \left[-2x \cos\left(\frac{x}{2}\right)\right]_{\frac{\pi}{2}}^{\pi} + 4 \sin\left(\frac{x}{2}\right) \bigg|_{\frac{\pi}{2}}^{\pi} \] Calculating this gives: \[ = -2\pi \cdot 0 + 0 + 4(0 - 1) = -4 \] ### Step 5: Combining Results Now we combine the results: \[ I = \sqrt{2} \left(\pi - 4\right) + \sqrt{2} \left(-4\right) \] This simplifies to: \[ I = \sqrt{2} \cdot \pi \] ### Final Result Thus, the value of the definite integral is: \[ I = \sqrt{2} \pi \] ### Answer The correct option is (B) \( \sqrt{2} \pi \).
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 1 Part-III|1 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 2 Part - 1|29 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 1|64 Videos
  • COMBINATORICS

    RESONANCE ENGLISH|Exercise Exercise-2 (Part-II: Previously Asked Question of RMO)|5 Videos
  • DPP

    RESONANCE ENGLISH|Exercise QUESTION|656 Videos

Similar Questions

Explore conceptually related problems

The value of the definite integral int_(0)^(pi//3) ln (1+ sqrt3tan x )dx equals

The value of the definite integral int_0^(pi/2) ((1+sin3x)/(1+2sinx)) dx equals to

Evaluate the following definite integral: int_0^(pi//2)sqrt(1+cosx\ )dx

The value of the definite integral int_0^(pi/2)sqrt(tanx)dx is sqrt(2)pi (b) pi/(sqrt(2)) 2sqrt(2)pi (d) pi/(2sqrt(2))

The value of the integral int_(-pi/2)^(pi//2) sqrt((1+cos2x)/(2))dx is

int_(0)^(pi^(2)//4) sin sqrt(x)dx equals to

The value of the integral int_(-pi//2)^(pi//2) sqrt(cosx-cos^(2)x)dx is

The value of the definite integral int_(2pi)^(5pi//2)(sin^(-1)(cosx)+cos^(-1)(sinx))dx is equal to

int_0^(pi/2) cosx/sqrt(1+sinx)dx

int_0^(pi/2) sqrt(cosx)sinxdx

RESONANCE ENGLISH-DEFINITE INTEGRATION & ITS APPLICATION -Exercise 1 Part-II
  1. The value of definite integral int0^(pi^2/4) dx/(1+sin sqrtx+ cos sqrt...

    Text Solution

    |

  2. int(2-ln3)^(3+ln3)(ln(4+x))/(ln(4+x)+ln(9-x))dx is equal to :

    Text Solution

    |

  3. The value of the definite integral I = int(0)^(pi)xsqrt(1+|cosx|) dx i...

    Text Solution

    |

  4. The value of int(0)^(pi//2)ln|tanx+cotx| dx is equal to :

    Text Solution

    |

  5. Let I(1)=int(0)^(1)(e^(x)dx)/(1+x) and I(2)=int(0)^(1)(x^(2)dx)/(e^(x^...

    Text Solution

    |

  6. The value of int(0)^(|x|){x} dx (where [*] and {*} denotes greatest in...

    Text Solution

    |

  7. If int(0)^(11) (11^(x))/(11^([x]))dx = k/(log11), (where [] denotes gr...

    Text Solution

    |

  8. f(x) = int(x)^(x^(2))(e^(t))/(t)dt, then f'(t) is equal to : (a) 0 (b)...

    Text Solution

    |

  9. f(x) = /int{0}^x(t-1)(t-2)^(2)(t-4)^(5) dt (xgt0) then numb er of poin...

    Text Solution

    |

  10. Lim(hto0)(int(a)^(x+h)ln^(2)tdt-inta^(x)ln^(2)tdt)/(h) equals to :

    Text Solution

    |

  11. The value of function f (x) =1 +x+ int (1) ^(x) (ln ^(2)t +2 ln t ) dt...

    Text Solution

    |

  12. If int(0)^(y)cost^(2)dt=int(0)^(x^(2))(sint)/tdt, then prove that (dy)...

    Text Solution

    |

  13. If int(sinx)^(1)t^(2) (f(t)) dt = (1-sinx), then f ((1)/(sqrt(3))) is

    Text Solution

    |

  14. The value of lim(a rarr oo)(1)/(a^(2))int(0)^(a)ln(1+e^(x))dx equals

    Text Solution

    |

  15. int(0)^(pi//2) sin^(4)xcos^(3)dx is equal to :

    Text Solution

    |

  16. int(0)^(1)x^(2)(1-x)^(3)dx is equal to

    Text Solution

    |

  17. Let I = int(1)^(3)sqrt(x^(4)+x^(2)), dx then

    Text Solution

    |

  18. I=int0^(2pi) e^(sin^2x+sinx+1)dx then

    Text Solution

    |

  19. Let f(x) = secx*f'(x), f(0) = 1, then f(pi/6) is equal to

    Text Solution

    |

  20. Let mean value of f(x) = 1/(x+c) over interval (0,2) is 1/2 ln 3 then...

    Text Solution

    |