Home
Class 12
MATHS
The value of int(0)^(pi//2)ln|tanx+cotx|...

The value of `int_(0)^(pi//2)ln|tanx+cotx|` dx is equal to :

A

`pi ln2`

B

`-pi ln 2`

C

`(pi)/(2) ln 2`

D

`-(pi)/(2)ln 2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{\frac{\pi}{2}} \ln |\tan x + \cot x| \, dx \), we can follow these steps: ### Step 1: Rewrite the integrand We start with the expression inside the logarithm: \[ \tan x + \cot x = \frac{\sin x}{\cos x} + \frac{\cos x}{\sin x} \] This can be combined into a single fraction: \[ \tan x + \cot x = \frac{\sin^2 x + \cos^2 x}{\sin x \cos x} \] Since \(\sin^2 x + \cos^2 x = 1\), we have: \[ \tan x + \cot x = \frac{1}{\sin x \cos x} \] ### Step 2: Substitute into the integral Now substituting this back into the integral, we get: \[ I = \int_{0}^{\frac{\pi}{2}} \ln \left| \frac{1}{\sin x \cos x} \right| \, dx \] Using the property of logarithms, this can be simplified to: \[ I = \int_{0}^{\frac{\pi}{2}} \ln(1) - \ln(\sin x \cos x) \, dx \] Since \(\ln(1) = 0\), we have: \[ I = -\int_{0}^{\frac{\pi}{2}} \ln(\sin x \cos x) \, dx \] ### Step 3: Use logarithm properties Using the property of logarithms, we can separate the integral: \[ I = -\int_{0}^{\frac{\pi}{2}} \ln(\sin x) \, dx - \int_{0}^{\frac{\pi}{2}} \ln(\cos x) \, dx \] Let \( J = \int_{0}^{\frac{\pi}{2}} \ln(\sin x) \, dx \). By symmetry, we know: \[ \int_{0}^{\frac{\pi}{2}} \ln(\cos x) \, dx = J \] Thus, we can write: \[ I = -2J \] ### Step 4: Evaluate \( J \) It is known that: \[ J = \int_{0}^{\frac{\pi}{2}} \ln(\sin x) \, dx = -\frac{\pi}{2} \ln(2) \] So substituting this back, we find: \[ I = -2 \left(-\frac{\pi}{2} \ln(2)\right) = \pi \ln(2) \] ### Final Answer Thus, the value of the integral is: \[ \boxed{\pi \ln(2)} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 1 Part-III|1 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 2 Part - 1|29 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 1|64 Videos
  • COMBINATORICS

    RESONANCE ENGLISH|Exercise Exercise-2 (Part-II: Previously Asked Question of RMO)|5 Videos
  • DPP

    RESONANCE ENGLISH|Exercise QUESTION|656 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2) log | tan x | dx is equal to

int_(0)^(pi//2) sin 2x log cot x dx is equal to

int_(0)^(pi//2) sin 2x log tan x dx is equal to

The value of int_(0)^(2 pi)(sin^(2)x-cos^(4)x)dx is equal to pi/k then k

The value of int_(0)^((pi)/(3))log(1+sqrt3 tanx)dx is equal to

Evaluate : int_(0)^(pi/2)log(tanx)dx

The value of the integral int_(0)^(pi//2)log |tan x cot x |dx is

Evaluate int_(0)^(pi//4)In(1+tanx)dx

Evaluate : int_(pi/3)^(pi/4)(tanx+cotx)^2dx

Evaluate : int_(pi/3)^(pi/4)(tanx+cotx)^2dx

RESONANCE ENGLISH-DEFINITE INTEGRATION & ITS APPLICATION -Exercise 1 Part-II
  1. int(2-ln3)^(3+ln3)(ln(4+x))/(ln(4+x)+ln(9-x))dx is equal to :

    Text Solution

    |

  2. The value of the definite integral I = int(0)^(pi)xsqrt(1+|cosx|) dx i...

    Text Solution

    |

  3. The value of int(0)^(pi//2)ln|tanx+cotx| dx is equal to :

    Text Solution

    |

  4. Let I(1)=int(0)^(1)(e^(x)dx)/(1+x) and I(2)=int(0)^(1)(x^(2)dx)/(e^(x^...

    Text Solution

    |

  5. The value of int(0)^(|x|){x} dx (where [*] and {*} denotes greatest in...

    Text Solution

    |

  6. If int(0)^(11) (11^(x))/(11^([x]))dx = k/(log11), (where [] denotes gr...

    Text Solution

    |

  7. f(x) = int(x)^(x^(2))(e^(t))/(t)dt, then f'(t) is equal to : (a) 0 (b)...

    Text Solution

    |

  8. f(x) = /int{0}^x(t-1)(t-2)^(2)(t-4)^(5) dt (xgt0) then numb er of poin...

    Text Solution

    |

  9. Lim(hto0)(int(a)^(x+h)ln^(2)tdt-inta^(x)ln^(2)tdt)/(h) equals to :

    Text Solution

    |

  10. The value of function f (x) =1 +x+ int (1) ^(x) (ln ^(2)t +2 ln t ) dt...

    Text Solution

    |

  11. If int(0)^(y)cost^(2)dt=int(0)^(x^(2))(sint)/tdt, then prove that (dy)...

    Text Solution

    |

  12. If int(sinx)^(1)t^(2) (f(t)) dt = (1-sinx), then f ((1)/(sqrt(3))) is

    Text Solution

    |

  13. The value of lim(a rarr oo)(1)/(a^(2))int(0)^(a)ln(1+e^(x))dx equals

    Text Solution

    |

  14. int(0)^(pi//2) sin^(4)xcos^(3)dx is equal to :

    Text Solution

    |

  15. int(0)^(1)x^(2)(1-x)^(3)dx is equal to

    Text Solution

    |

  16. Let I = int(1)^(3)sqrt(x^(4)+x^(2)), dx then

    Text Solution

    |

  17. I=int0^(2pi) e^(sin^2x+sinx+1)dx then

    Text Solution

    |

  18. Let f(x) = secx*f'(x), f(0) = 1, then f(pi/6) is equal to

    Text Solution

    |

  19. Let mean value of f(x) = 1/(x+c) over interval (0,2) is 1/2 ln 3 then...

    Text Solution

    |

  20. lim(nrarr0) sum(r=1)^(n) ((r^(3))/(r^(4)+n^(4))) equals to :

    Text Solution

    |