Home
Class 12
MATHS
The value of int(0)^(|x|){x} dx (where [...

The value of `int_(0)^(|x|){x}` dx (where `[*]` and `{*}` denotes greatest integer and fraction part function respectively) is

A

`1/2 [x]`

B

`2[x]`

C

`(1)/(2[x])`

D

`[x]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{0}^{|x|} \{x\} \, dx \), where \(\{x\}\) denotes the fractional part of \(x\) and \([x]\) denotes the greatest integer part of \(x\), we can follow these steps: ### Step 1: Understanding the fractional part function The fractional part of \(x\) can be expressed as: \[ \{x\} = x - [x] \] where \([x]\) is the greatest integer less than or equal to \(x\). ### Step 2: Setting up the integral We can rewrite the integral using the definition of the fractional part: \[ \int_{0}^{|x|} \{x\} \, dx = \int_{0}^{|x|} (x - [x]) \, dx \] ### Step 3: Splitting the integral This integral can be split into two parts: \[ \int_{0}^{|x|} (x - [x]) \, dx = \int_{0}^{|x|} x \, dx - \int_{0}^{|x|} [x] \, dx \] ### Step 4: Calculating the first integral The first integral is straightforward: \[ \int_{0}^{|x|} x \, dx = \left[ \frac{x^2}{2} \right]_{0}^{|x|} = \frac{|x|^2}{2} \] ### Step 5: Calculating the second integral To compute the second integral, we need to consider how the greatest integer function behaves over the interval \([0, |x|]\). If \(n\) is the largest integer such that \(n \leq |x|\), then we can break the integral into segments: \[ \int_{0}^{|x|} [x] \, dx = \sum_{k=0}^{n-1} \int_{k}^{k+1} k \, dx + \int_{n}^{|x|} n \, dx \] Calculating each part: 1. For \(k = 0\) to \(n-1\): \[ \int_{k}^{k+1} k \, dx = k \cdot (1) = k \] So, the sum becomes: \[ \sum_{k=0}^{n-1} k = \frac{(n-1)n}{2} \] 2. For the last part: \[ \int_{n}^{|x|} n \, dx = n \cdot (|x| - n) \] Combining these gives: \[ \int_{0}^{|x|} [x] \, dx = \frac{(n-1)n}{2} + n(|x| - n) \] ### Step 6: Putting it all together Now, substituting back into our integral: \[ \int_{0}^{|x|} \{x\} \, dx = \frac{|x|^2}{2} - \left( \frac{(n-1)n}{2} + n(|x| - n) \right) \] ### Step 7: Final expression The final expression for the integral becomes: \[ \int_{0}^{|x|} \{x\} \, dx = \frac{|x|^2}{2} - \left( \frac{(n-1)n}{2} + n|x| - n^2 \right) \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 1 Part-III|1 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 2 Part - 1|29 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 1|64 Videos
  • COMBINATORICS

    RESONANCE ENGLISH|Exercise Exercise-2 (Part-II: Previously Asked Question of RMO)|5 Videos
  • DPP

    RESONANCE ENGLISH|Exercise QUESTION|656 Videos

Similar Questions

Explore conceptually related problems

The value of int_(1)^(4){x}^([x]) dx (where , [.] and {.} denotes the greatest integer and fractional part of x) is equal to

Solve : [x]^(2)=x+2{x}, where [.] and {.} denote the greatest integer and the fractional part functions, respectively.

the value of int_(0)^([x]) dx (where , [.] denotes the greatest integer function)

Solve 2[x]=x+{x},where [.] and {} denote the greatest integer function and the fractional part function, respectively.

If f(x) = [x^2] + sqrt({x}^2 , where [] and {.} denote the greatest integer and fractional part functions respectively,then

Range of the function f defined by (x) =[(1)/(sin{x})] (where [.] and {x} denotes greatest integer and fractional part of x respectively) is

If f(x)=(tanx)/(x) , then find lim_(xto0)([f(x)]+x^(2))^((1)/({f(x)})) , where [.] and {.} denotes greatest integer and fractional part function respectively.

Domain of f(x)=sin^(-1)(([x])/({x})) , where [*] and {*} denote greatest integer and fractional parts.

The number of solution of the equastion |x-1|+|x-2|=[{x}]+{[x]}+1 , where [.] and {.} denotes greatest integer function and fraction part funstion respectively is :

Find the solution of the equation [x] + {-x} = 2x, (where [*] and {*} represents greatest integer function and fractional part function respectively.

RESONANCE ENGLISH-DEFINITE INTEGRATION & ITS APPLICATION -Exercise 1 Part-II
  1. The value of int(0)^(pi//2)ln|tanx+cotx| dx is equal to :

    Text Solution

    |

  2. Let I(1)=int(0)^(1)(e^(x)dx)/(1+x) and I(2)=int(0)^(1)(x^(2)dx)/(e^(x^...

    Text Solution

    |

  3. The value of int(0)^(|x|){x} dx (where [*] and {*} denotes greatest in...

    Text Solution

    |

  4. If int(0)^(11) (11^(x))/(11^([x]))dx = k/(log11), (where [] denotes gr...

    Text Solution

    |

  5. f(x) = int(x)^(x^(2))(e^(t))/(t)dt, then f'(t) is equal to : (a) 0 (b)...

    Text Solution

    |

  6. f(x) = /int{0}^x(t-1)(t-2)^(2)(t-4)^(5) dt (xgt0) then numb er of poin...

    Text Solution

    |

  7. Lim(hto0)(int(a)^(x+h)ln^(2)tdt-inta^(x)ln^(2)tdt)/(h) equals to :

    Text Solution

    |

  8. The value of function f (x) =1 +x+ int (1) ^(x) (ln ^(2)t +2 ln t ) dt...

    Text Solution

    |

  9. If int(0)^(y)cost^(2)dt=int(0)^(x^(2))(sint)/tdt, then prove that (dy)...

    Text Solution

    |

  10. If int(sinx)^(1)t^(2) (f(t)) dt = (1-sinx), then f ((1)/(sqrt(3))) is

    Text Solution

    |

  11. The value of lim(a rarr oo)(1)/(a^(2))int(0)^(a)ln(1+e^(x))dx equals

    Text Solution

    |

  12. int(0)^(pi//2) sin^(4)xcos^(3)dx is equal to :

    Text Solution

    |

  13. int(0)^(1)x^(2)(1-x)^(3)dx is equal to

    Text Solution

    |

  14. Let I = int(1)^(3)sqrt(x^(4)+x^(2)), dx then

    Text Solution

    |

  15. I=int0^(2pi) e^(sin^2x+sinx+1)dx then

    Text Solution

    |

  16. Let f(x) = secx*f'(x), f(0) = 1, then f(pi/6) is equal to

    Text Solution

    |

  17. Let mean value of f(x) = 1/(x+c) over interval (0,2) is 1/2 ln 3 then...

    Text Solution

    |

  18. lim(nrarr0) sum(r=1)^(n) ((r^(3))/(r^(4)+n^(4))) equals to :

    Text Solution

    |

  19. underset(n to oo)lim" " underset(r=2n+1)overset(3n)sum (n)/(r^(2)-...

    Text Solution

    |

  20. lim(n->oo)[(1+1/n^2)(1+2^2 /n^2)(1+3^2 /n^2)......(1+n^2 / n^2)]^(1/n)

    Text Solution

    |