Home
Class 12
MATHS
If int(0)^(11) (11^(x))/(11^([x]))dx = k...

If `int_(0)^(11) (11^(x))/(11^([x]))dx = k/(log11)`, (where [] denotes greatest integer function) then value of k is

A

`11`

B

`101`

C

`110`

D

`121`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{0}^{11} \frac{11^x}{11^{[x]}} \, dx \] where \([x]\) denotes the greatest integer function, we can break the integral into segments based on the intervals defined by the greatest integer function. ### Step 1: Break the integral into intervals The greatest integer function \([x]\) takes constant integer values within each interval. Thus, we can split the integral from \(0\) to \(11\) into segments: \[ I = \int_{0}^{1} \frac{11^x}{11^0} \, dx + \int_{1}^{2} \frac{11^x}{11^1} \, dx + \int_{2}^{3} \frac{11^x}{11^2} \, dx + \ldots + \int_{10}^{11} \frac{11^x}{11^{10}} \, dx \] This gives us: \[ I = \int_{0}^{1} 11^x \, dx + \int_{1}^{2} \frac{11^x}{11} \, dx + \int_{2}^{3} \frac{11^x}{11^2} \, dx + \ldots + \int_{10}^{11} \frac{11^x}{11^{10}} \, dx \] ### Step 2: Evaluate each integral We can evaluate each integral separately. The general form for the integral of \(11^x\) is: \[ \int 11^x \, dx = \frac{11^x}{\log 11} \] Now we can evaluate each segment: 1. For \( \int_{0}^{1} 11^x \, dx \): \[ = \left[ \frac{11^x}{\log 11} \right]_{0}^{1} = \frac{11^1}{\log 11} - \frac{11^0}{\log 11} = \frac{11 - 1}{\log 11} = \frac{10}{\log 11} \] 2. For \( \int_{1}^{2} \frac{11^x}{11} \, dx \): \[ = \frac{1}{11} \left[ \frac{11^x}{\log 11} \right]_{1}^{2} = \frac{1}{11} \left( \frac{11^2 - 11^1}{\log 11} \right) = \frac{1}{11} \cdot \frac{121 - 11}{\log 11} = \frac{110}{11 \log 11} = \frac{10}{\log 11} \] 3. Continuing this process, for \( \int_{2}^{3} \frac{11^x}{11^2} \, dx \): \[ = \frac{1}{11^2} \left[ \frac{11^x}{\log 11} \right]_{2}^{3} = \frac{1}{121} \left( \frac{11^3 - 11^2}{\log 11} \right) = \frac{1}{121} \cdot \frac{1331 - 121}{\log 11} = \frac{1210}{121 \log 11} = \frac{10}{\log 11} \] 4. This pattern continues until \( \int_{10}^{11} \frac{11^x}{11^{10}} \, dx \): \[ = \frac{1}{11^{10}} \left[ \frac{11^x}{\log 11} \right]_{10}^{11} = \frac{1}{11^{10}} \left( \frac{11^{11} - 11^{10}}{\log 11} \right) = \frac{1}{11^{10}} \cdot \frac{11^{10}(11 - 1)}{\log 11} = \frac{10}{\log 11} \] ### Step 3: Sum all integrals Each integral contributes \(\frac{10}{\log 11}\) and there are \(11\) such segments (from \(0\) to \(11\)): \[ I = 11 \cdot \frac{10}{\log 11} = \frac{110}{\log 11} \] ### Step 4: Relate to \(k\) Given that \[ I = \frac{k}{\log 11} \] we can equate: \[ \frac{110}{\log 11} = \frac{k}{\log 11} \] Thus, we find: \[ k = 110 \] ### Final Answer The value of \(k\) is \(110\).
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 1 Part-III|1 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 2 Part - 1|29 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 1|64 Videos
  • COMBINATORICS

    RESONANCE ENGLISH|Exercise Exercise-2 (Part-II: Previously Asked Question of RMO)|5 Videos
  • DPP

    RESONANCE ENGLISH|Exercise QUESTION|656 Videos

Similar Questions

Explore conceptually related problems

int_(0)^([x]//3) (8^(x))/(2^([3x]))dx where [.] denotes the greatest integer function, is equal to

int_(-1)^(41//2)e^(2x-[2x])dx , where [*] denotes the greatest integer function.

int_(-1)^(2)[([x])/(1+x^(2))]dx , where [.] denotes the greatest integer function, is equal to

The value of int_0^([x]) 2^x/(2^([x])) dx is equal to (where, [.] denotes the greatest integer function)

int_(0)^(pi)[cotx]dx, where [.] denotes the greatest integer function, is equal to

If f(x) = log_([x-1])(|x|)/(x) ,where [.] denotes the greatest integer function,then

f(x)=log(x-[x]) , where [*] denotes the greatest integer function. find the domain of f(x).

the value of int_(0)^([x]) dx (where , [.] denotes the greatest integer function)

The value of int_(e)^(pi^(2))[log_(pi)x] d(log_(e)x) (where [.] denotes greatest integer function) is

The value of I = int_(-1)^(1)[x sin(pix)]dx is (where [.] denotes the greatest integer function)

RESONANCE ENGLISH-DEFINITE INTEGRATION & ITS APPLICATION -Exercise 1 Part-II
  1. Let I(1)=int(0)^(1)(e^(x)dx)/(1+x) and I(2)=int(0)^(1)(x^(2)dx)/(e^(x^...

    Text Solution

    |

  2. The value of int(0)^(|x|){x} dx (where [*] and {*} denotes greatest in...

    Text Solution

    |

  3. If int(0)^(11) (11^(x))/(11^([x]))dx = k/(log11), (where [] denotes gr...

    Text Solution

    |

  4. f(x) = int(x)^(x^(2))(e^(t))/(t)dt, then f'(t) is equal to : (a) 0 (b)...

    Text Solution

    |

  5. f(x) = /int{0}^x(t-1)(t-2)^(2)(t-4)^(5) dt (xgt0) then numb er of poin...

    Text Solution

    |

  6. Lim(hto0)(int(a)^(x+h)ln^(2)tdt-inta^(x)ln^(2)tdt)/(h) equals to :

    Text Solution

    |

  7. The value of function f (x) =1 +x+ int (1) ^(x) (ln ^(2)t +2 ln t ) dt...

    Text Solution

    |

  8. If int(0)^(y)cost^(2)dt=int(0)^(x^(2))(sint)/tdt, then prove that (dy)...

    Text Solution

    |

  9. If int(sinx)^(1)t^(2) (f(t)) dt = (1-sinx), then f ((1)/(sqrt(3))) is

    Text Solution

    |

  10. The value of lim(a rarr oo)(1)/(a^(2))int(0)^(a)ln(1+e^(x))dx equals

    Text Solution

    |

  11. int(0)^(pi//2) sin^(4)xcos^(3)dx is equal to :

    Text Solution

    |

  12. int(0)^(1)x^(2)(1-x)^(3)dx is equal to

    Text Solution

    |

  13. Let I = int(1)^(3)sqrt(x^(4)+x^(2)), dx then

    Text Solution

    |

  14. I=int0^(2pi) e^(sin^2x+sinx+1)dx then

    Text Solution

    |

  15. Let f(x) = secx*f'(x), f(0) = 1, then f(pi/6) is equal to

    Text Solution

    |

  16. Let mean value of f(x) = 1/(x+c) over interval (0,2) is 1/2 ln 3 then...

    Text Solution

    |

  17. lim(nrarr0) sum(r=1)^(n) ((r^(3))/(r^(4)+n^(4))) equals to :

    Text Solution

    |

  18. underset(n to oo)lim" " underset(r=2n+1)overset(3n)sum (n)/(r^(2)-...

    Text Solution

    |

  19. lim(n->oo)[(1+1/n^2)(1+2^2 /n^2)(1+3^2 /n^2)......(1+n^2 / n^2)]^(1/n)

    Text Solution

    |

  20. lim(nrarroo) [sin'(pi)/(n)+sin'(2pi)/(n)+"......"+sin'((n-1))/(n)pi] i...

    Text Solution

    |