Home
Class 12
MATHS
f(x) = int(x)^(x^(2))(e^(t))/(t)dt, then...

`f(x) = int_(x)^(x^(2))(e^(t))/(t)dt`, then `f'(t)` is equal to : (a) 0 (b) `2e` (c) `2e^2 -2` (d) `e^2-e`

A

0

B

2e

C

`2e^(2)-2`

D

`e^(2)-e`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the derivative \( f'(t) \) of the function defined by the integral: \[ f(x) = \int_{x}^{x^2} \frac{e^t}{t} \, dt \] ### Step 1: Identify the Function and Its Limits The function \( f(x) \) is defined as an integral from \( x \) to \( x^2 \) of the function \( g(t) = \frac{e^t}{t} \). ### Step 2: Apply the Fundamental Theorem of Calculus According to the Fundamental Theorem of Calculus, if we have a function defined as an integral with variable limits, the derivative can be computed using: \[ f'(x) = g(b) \cdot \frac{db}{dx} - g(a) \cdot \frac{da}{dx} \] where \( a = x \) and \( b = x^2 \). ### Step 3: Compute the Derivatives of the Limits - The upper limit \( b = x^2 \) gives \( \frac{db}{dx} = 2x \). - The lower limit \( a = x \) gives \( \frac{da}{dx} = 1 \). ### Step 4: Substitute into the Derivative Formula Now substituting into the formula: \[ f'(x) = g(x^2) \cdot 2x - g(x) \cdot 1 \] ### Step 5: Substitute the Function \( g(t) \) Substituting \( g(t) = \frac{e^t}{t} \): \[ f'(x) = \frac{e^{x^2}}{x^2} \cdot 2x - \frac{e^x}{x} \] ### Step 6: Simplify the Expression Now simplify the expression: \[ f'(x) = \frac{2x e^{x^2}}{x^2} - \frac{e^x}{x} = \frac{2e^{x^2}}{x} - \frac{e^x}{x} \] ### Step 7: Combine the Terms Combining the terms gives: \[ f'(x) = \frac{2e^{x^2} - e^x}{x} \] ### Step 8: Evaluate \( f'(t) \) To find \( f'(t) \), replace \( x \) with \( t \): \[ f'(t) = \frac{2e^{t^2} - e^t}{t} \] ### Final Result Thus, the derivative \( f'(t) \) is: \[ f'(t) = 2e^{t^2} - e^t \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 1 Part-III|1 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 2 Part - 1|29 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 1|64 Videos
  • COMBINATORICS

    RESONANCE ENGLISH|Exercise Exercise-2 (Part-II: Previously Asked Question of RMO)|5 Videos
  • DPP

    RESONANCE ENGLISH|Exercise QUESTION|656 Videos

Similar Questions

Explore conceptually related problems

If f(x) = int_(x)^(x^(2)) t^(2)lnt then find f'(e)

If f(x)=int_(x^2)^(x^2+1)e^(-t^2)dt , then f(x) increases in

I=int_(0)^(2)(e^(f(x)))/(e^(f(x))+e^(f(2-x)))dx is equal to

lim_(x to 0)(int_(0^(x) x e^(t^(2))dt)/(1+x-e^(x)) is equal to

If int_(0)^(x)f(t)dt = x^(2)-int_(0)^(x^(2))(f(t))/(t)dt then find f(1) .

Let f(x)=int_(0)^(x)(e^(t))/(t)dt(xgt0), then e^(-a)[f(x+1)-f(1+a)]=

If f(1)=2, f\'(x)=f(x) and h(x)=fof(x) then h'\(1) is equal to (A) 4e (B) 2e^2 (C) 4e^2 (D) e^2

The value of int_(1/e)^(tanx)(tdt)/(1+t^2)+int_(1/e)^(cotx)(dt)/(t(1+t^2)), where x in (pi/6,pi/3) , is equal to: (a)0 (b) 2 (c) 1 (d) none of these

If int_1^2e^(x^2)dx=a ,t h e nint_e^(e^4)sqrt(1n x)dx is equal to (a) 2e^4-2e-a (b) 2e^4-e-a (c) 2e^4-e-2a (d) e^4-e-a

If int_1^2e^(x^2)dx=a ,t h e nint_e^(e^4)sqrt(1n x)dx is equal to (a) 2e^4-2e-a (b) 2e^4-e-a (c) 2e^4-e-2a (d) e^4-e-a

RESONANCE ENGLISH-DEFINITE INTEGRATION & ITS APPLICATION -Exercise 1 Part-II
  1. The value of int(0)^(|x|){x} dx (where [*] and {*} denotes greatest in...

    Text Solution

    |

  2. If int(0)^(11) (11^(x))/(11^([x]))dx = k/(log11), (where [] denotes gr...

    Text Solution

    |

  3. f(x) = int(x)^(x^(2))(e^(t))/(t)dt, then f'(t) is equal to : (a) 0 (b)...

    Text Solution

    |

  4. f(x) = /int{0}^x(t-1)(t-2)^(2)(t-4)^(5) dt (xgt0) then numb er of poin...

    Text Solution

    |

  5. Lim(hto0)(int(a)^(x+h)ln^(2)tdt-inta^(x)ln^(2)tdt)/(h) equals to :

    Text Solution

    |

  6. The value of function f (x) =1 +x+ int (1) ^(x) (ln ^(2)t +2 ln t ) dt...

    Text Solution

    |

  7. If int(0)^(y)cost^(2)dt=int(0)^(x^(2))(sint)/tdt, then prove that (dy)...

    Text Solution

    |

  8. If int(sinx)^(1)t^(2) (f(t)) dt = (1-sinx), then f ((1)/(sqrt(3))) is

    Text Solution

    |

  9. The value of lim(a rarr oo)(1)/(a^(2))int(0)^(a)ln(1+e^(x))dx equals

    Text Solution

    |

  10. int(0)^(pi//2) sin^(4)xcos^(3)dx is equal to :

    Text Solution

    |

  11. int(0)^(1)x^(2)(1-x)^(3)dx is equal to

    Text Solution

    |

  12. Let I = int(1)^(3)sqrt(x^(4)+x^(2)), dx then

    Text Solution

    |

  13. I=int0^(2pi) e^(sin^2x+sinx+1)dx then

    Text Solution

    |

  14. Let f(x) = secx*f'(x), f(0) = 1, then f(pi/6) is equal to

    Text Solution

    |

  15. Let mean value of f(x) = 1/(x+c) over interval (0,2) is 1/2 ln 3 then...

    Text Solution

    |

  16. lim(nrarr0) sum(r=1)^(n) ((r^(3))/(r^(4)+n^(4))) equals to :

    Text Solution

    |

  17. underset(n to oo)lim" " underset(r=2n+1)overset(3n)sum (n)/(r^(2)-...

    Text Solution

    |

  18. lim(n->oo)[(1+1/n^2)(1+2^2 /n^2)(1+3^2 /n^2)......(1+n^2 / n^2)]^(1/n)

    Text Solution

    |

  19. lim(nrarroo) [sin'(pi)/(n)+sin'(2pi)/(n)+"......"+sin'((n-1))/(n)pi] i...

    Text Solution

    |

  20. Let I(n) = int(0)^(1)(1-x^(3))^(n)dx, (nin N) then

    Text Solution

    |