Home
Class 12
MATHS
Let I = int(1)^(3)sqrt(x^(4)+x^(2)), dx ...

Let `I = int_(1)^(3)sqrt(x^(4)+x^(2))`, dx then

A

`I gt 6sqrt(10)`

B

`I lt 2sqrt(2)`

C

`2sqrt(2)lt I lt 6sqrt(10)`

D

`I lt 1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{1}^{3} \sqrt{x^4 + x^2} \, dx \), we can follow these steps: ### Step 1: Simplify the integrand We start with the expression under the square root: \[ \sqrt{x^4 + x^2} \] We can factor out \( x^2 \): \[ \sqrt{x^4 + x^2} = \sqrt{x^2(x^2 + 1)} = x \sqrt{x^2 + 1} \] Thus, we can rewrite the integral: \[ I = \int_{1}^{3} x \sqrt{x^2 + 1} \, dx \] ### Step 2: Use substitution Let \( t = x^2 + 1 \). Then, differentiating gives: \[ dt = 2x \, dx \quad \Rightarrow \quad dx = \frac{dt}{2x} \] Now we need to change the limits of integration. When \( x = 1 \): \[ t = 1^2 + 1 = 2 \] When \( x = 3 \): \[ t = 3^2 + 1 = 10 \] Now we substitute \( dx \) and change the limits: \[ I = \int_{2}^{10} x \sqrt{t} \cdot \frac{dt}{2x} = \frac{1}{2} \int_{2}^{10} \sqrt{t} \, dt \] ### Step 3: Integrate The integral of \( \sqrt{t} \) is: \[ \int \sqrt{t} \, dt = \frac{2}{3} t^{3/2} \] Thus, we have: \[ I = \frac{1}{2} \cdot \frac{2}{3} \left[ t^{3/2} \right]_{2}^{10} = \frac{1}{3} \left[ 10^{3/2} - 2^{3/2} \right] \] ### Step 4: Calculate the limits Now we calculate \( 10^{3/2} \) and \( 2^{3/2} \): \[ 10^{3/2} = 10 \sqrt{10} \quad \text{and} \quad 2^{3/2} = 2 \sqrt{2} \] Thus, we can write: \[ I = \frac{1}{3} \left[ 10 \sqrt{10} - 2 \sqrt{2} \right] \] ### Step 5: Final expression Now we have the final expression for the integral: \[ I = \frac{10 \sqrt{10} - 2 \sqrt{2}}{3} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 1 Part-III|1 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 2 Part - 1|29 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 1|64 Videos
  • COMBINATORICS

    RESONANCE ENGLISH|Exercise Exercise-2 (Part-II: Previously Asked Question of RMO)|5 Videos
  • DPP

    RESONANCE ENGLISH|Exercise QUESTION|656 Videos

Similar Questions

Explore conceptually related problems

Let f(x) be a continuous function and I = int_(1)^(9) sqrt(x)f(x) dx , then

Let I_(n)=int_(0)^(1)x^(n)sqrt(1-x^(2))dx. Then lim_(nrarroo)(I_(n))/(I_(n-2))=

Prove the following inequalities : (i) (sqrt(3))/(8) lt int_(pi//4)^(pi//3)(sinx)/(x)dx lt (sqrt(2))/6 , (ii) 4 le int_(1)^(3)sqrt((3x^(2)+x^(2)))dx le 20 sqrt(30)

If I=int_(0)^(1) (dx)/(sqrt(1+x^(4)))dx then

Let A = int_(1)^(e^(2))(lnx)/(sqrt(x))dx , then

Let I_(1)=int_(1)^(2)(x)/(sqrt(1+x^(2)))dx and I_(2)=int_(1)^(2)(1)/(x)dx .Then

int(1)/(sqrt(4x^(2)-x+4))dx

int(x^2+1)/sqrt(x^2+4)dx

int(x+1)/(sqrt(2x^(2)+x-3))dx

Prove that 4le int_(1)^(3) sqrt(3+x^(3)) dx le 2sqrt30 .

RESONANCE ENGLISH-DEFINITE INTEGRATION & ITS APPLICATION -Exercise 1 Part-II
  1. int(0)^(pi//2) sin^(4)xcos^(3)dx is equal to :

    Text Solution

    |

  2. int(0)^(1)x^(2)(1-x)^(3)dx is equal to

    Text Solution

    |

  3. Let I = int(1)^(3)sqrt(x^(4)+x^(2)), dx then

    Text Solution

    |

  4. I=int0^(2pi) e^(sin^2x+sinx+1)dx then

    Text Solution

    |

  5. Let f(x) = secx*f'(x), f(0) = 1, then f(pi/6) is equal to

    Text Solution

    |

  6. Let mean value of f(x) = 1/(x+c) over interval (0,2) is 1/2 ln 3 then...

    Text Solution

    |

  7. lim(nrarr0) sum(r=1)^(n) ((r^(3))/(r^(4)+n^(4))) equals to :

    Text Solution

    |

  8. underset(n to oo)lim" " underset(r=2n+1)overset(3n)sum (n)/(r^(2)-...

    Text Solution

    |

  9. lim(n->oo)[(1+1/n^2)(1+2^2 /n^2)(1+3^2 /n^2)......(1+n^2 / n^2)]^(1/n)

    Text Solution

    |

  10. lim(nrarroo) [sin'(pi)/(n)+sin'(2pi)/(n)+"......"+sin'((n-1))/(n)pi] i...

    Text Solution

    |

  11. Let I(n) = int(0)^(1)(1-x^(3))^(n)dx, (nin N) then

    Text Solution

    |

  12. The area bounded by the x-axis and the curve y = 4x - x^2 - 3 is

    Text Solution

    |

  13. The area of the figure bounded by right of the line y = x + 1, y= cos ...

    Text Solution

    |

  14. Area bounded by curve y^(3) - 9y + x = 0, and y-axis is

    Text Solution

    |

  15. Let f":[0,oo)rarr R be a continuous and stricity increasing function ...

    Text Solution

    |

  16. Find the area bounded by the curves y = e^(x), y = |x-1| and x = 2.

    Text Solution

    |

  17. The area bounded by y = 2-|2-x| and y=3/|x| is:

    Text Solution

    |

  18. The area bounded by the curve y^(2) = 4x and the line 2x-3y+4=0 is

    Text Solution

    |

  19. Area of region bounded by x=0, y=0, x=2, y=2, y<=e^x & y>=lnx is

    Text Solution

    |

  20. The area between the arms of the curve |y|=x^(3) from x = 0 to x = 2 i...

    Text Solution

    |