Home
Class 12
MATHS
I=int0^(2pi) e^(sin^2x+sinx+1)dx then...

`I=int_0^(2pi) e^(sin^2x+sinx+1)dx` then

A

`pi e^(3) lt I lt 2pie^(5)`

B

`2pie^(3//4) I lt 2 pie^(3)`

C

`2pie^(3) lt I lt 2pie^(4)`

D

`0 lt I lt 2pi`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_0^{2\pi} e^{\sin^2 x + \sin x + 1} \, dx \), we can follow these steps: ### Step 1: Simplify the exponent We start with the expression in the exponent: \[ \sin^2 x + \sin x + 1 \] We can rewrite this as: \[ \sin^2 x + \sin x + 1 = \left( \sin x + \frac{1}{2} \right)^2 + 1 - \frac{1}{4} \] This simplifies to: \[ \left( \sin x + \frac{1}{2} \right)^2 + \frac{3}{4} \] ### Step 2: Substitute back into the integral Now we substitute this back into the integral: \[ I = \int_0^{2\pi} e^{\left( \sin x + \frac{1}{2} \right)^2 + \frac{3}{4}} \, dx \] This can be factored as: \[ I = e^{\frac{3}{4}} \int_0^{2\pi} e^{\left( \sin x + \frac{1}{2} \right)^2} \, dx \] ### Step 3: Analyze the function Next, we need to analyze the function \( \left( \sin x + \frac{1}{2} \right)^2 \). The maximum value of \( \sin x \) is 1, so: \[ \text{Maximum of } \left( \sin x + \frac{1}{2} \right)^2 = \left( 1 + \frac{1}{2} \right)^2 = \left( \frac{3}{2} \right)^2 = \frac{9}{4} \] The minimum value occurs when \( \sin x = -1 \): \[ \text{Minimum of } \left( \sin x + \frac{1}{2} \right)^2 = \left( -1 + \frac{1}{2} \right)^2 = \left( -\frac{1}{2} \right)^2 = \frac{1}{4} \] ### Step 4: Set up inequalities for the integral Thus, we can establish the bounds for the integral: \[ \frac{3}{4} \leq \left( \sin x + \frac{1}{2} \right)^2 \leq \frac{9}{4} \] This implies: \[ e^{\frac{3}{4}} \leq e^{\left( \sin x + \frac{1}{2} \right)^2} \leq e^{\frac{9}{4}} \] ### Step 5: Integrate the bounds Now we can integrate these bounds over \( [0, 2\pi] \): \[ \int_0^{2\pi} e^{\frac{3}{4}} \, dx \leq I \leq \int_0^{2\pi} e^{\frac{9}{4}} \, dx \] Calculating these integrals gives: \[ 2\pi e^{\frac{3}{4}} \leq I \leq 2\pi e^{\frac{9}{4}} \] ### Final Result Thus, we can conclude: \[ 2\pi e^{\frac{3}{4}} \leq I \leq 2\pi e^{\frac{9}{4}} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 1 Part-III|1 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 2 Part - 1|29 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 1|64 Videos
  • COMBINATORICS

    RESONANCE ENGLISH|Exercise Exercise-2 (Part-II: Previously Asked Question of RMO)|5 Videos
  • DPP

    RESONANCE ENGLISH|Exercise QUESTION|656 Videos

Similar Questions

Explore conceptually related problems

int_0^(2pi) sin^2x dx

If I_(n)=int_(0)^(pi) e^(x)sin^(n)x " dx then " (I_(3))/(I_(1)) is equal to

Suppose I_1=int_0^(pi/2)cos(pisin^2x)dx and I_2=int_0^(pi/2)cos(2pisin^2x)dx and I_3=int_0^(pi/2) cos(pi sinx)dx , then

If I_(n)=int_(0)^(pi) e^(x)(sinx)^(n)dx , then (I_(3))/(I_(1)) is equal to

int _0^(pi/2) (sin^2x)/(sinx+cosx)dx

Prove that I_(1),I_(2),I_(3)"..." form an AP, if I_(n)=int_(0)^(pi)(sin2nx)/(sinx)dx .

If I_1=int_0^pixf(sin^3x+cos^2x)dxa n d I_2=int_0^(pi/2)f(sin^3x+cos^2x)dx ,t h e nr e l a t eI_1a n dI_2

IfI_1=int_0^(pi/2)(cos^2x)/(1+cos^2x)dx ,I_2=int_0^(pi/2)(sin^2x)/(1+sin^2x)dx I_3=int_0^(pi/2)(1+2cos^2xsin^2x)/(4+2cos^2xsin^2x)dx ,t h e n I_1=I_2> I_3 (b) I_3> I_1=I_2 I_1=I_2=I_3 (d) none of these

If I_1=int_0^(pi//2)(cos^2x)/(1+cos^2x)dx , I_2=int_0^(pi//2)(sin^2x)/(1+sin^2x)dx and I_3=int_0^(pi//2)(1+2cos^2xsin^2x)/(4+2cos^2xsin^2x)dx , then (a) I_1=I_2 > I_3 (b) I_3> I_1=I_2 (c) I_1=I_2=I_3 (d) none of these

If I_n = int_0^(pi/2) (sin^2 nx)/(sin^2 x) dx , then

RESONANCE ENGLISH-DEFINITE INTEGRATION & ITS APPLICATION -Exercise 1 Part-II
  1. int(0)^(1)x^(2)(1-x)^(3)dx is equal to

    Text Solution

    |

  2. Let I = int(1)^(3)sqrt(x^(4)+x^(2)), dx then

    Text Solution

    |

  3. I=int0^(2pi) e^(sin^2x+sinx+1)dx then

    Text Solution

    |

  4. Let f(x) = secx*f'(x), f(0) = 1, then f(pi/6) is equal to

    Text Solution

    |

  5. Let mean value of f(x) = 1/(x+c) over interval (0,2) is 1/2 ln 3 then...

    Text Solution

    |

  6. lim(nrarr0) sum(r=1)^(n) ((r^(3))/(r^(4)+n^(4))) equals to :

    Text Solution

    |

  7. underset(n to oo)lim" " underset(r=2n+1)overset(3n)sum (n)/(r^(2)-...

    Text Solution

    |

  8. lim(n->oo)[(1+1/n^2)(1+2^2 /n^2)(1+3^2 /n^2)......(1+n^2 / n^2)]^(1/n)

    Text Solution

    |

  9. lim(nrarroo) [sin'(pi)/(n)+sin'(2pi)/(n)+"......"+sin'((n-1))/(n)pi] i...

    Text Solution

    |

  10. Let I(n) = int(0)^(1)(1-x^(3))^(n)dx, (nin N) then

    Text Solution

    |

  11. The area bounded by the x-axis and the curve y = 4x - x^2 - 3 is

    Text Solution

    |

  12. The area of the figure bounded by right of the line y = x + 1, y= cos ...

    Text Solution

    |

  13. Area bounded by curve y^(3) - 9y + x = 0, and y-axis is

    Text Solution

    |

  14. Let f":[0,oo)rarr R be a continuous and stricity increasing function ...

    Text Solution

    |

  15. Find the area bounded by the curves y = e^(x), y = |x-1| and x = 2.

    Text Solution

    |

  16. The area bounded by y = 2-|2-x| and y=3/|x| is:

    Text Solution

    |

  17. The area bounded by the curve y^(2) = 4x and the line 2x-3y+4=0 is

    Text Solution

    |

  18. Area of region bounded by x=0, y=0, x=2, y=2, y<=e^x & y>=lnx is

    Text Solution

    |

  19. The area between the arms of the curve |y|=x^(3) from x = 0 to x = 2 i...

    Text Solution

    |

  20. The area bounded by the parabolas y=(x+1)^2 and y=(x-1)^2a n dy=(x-1)^...

    Text Solution

    |