Home
Class 12
MATHS
Let u = int(pi//6)^(pi//2) min. (sqrt(3)...

Let `u = int_(pi//6)^(pi//2)` min. (`sqrt(3)sinx, cosx`) dx and `V = int_(-3)^(5)x^(2)sgn (x-1) dx`. If `V = lambdaU`, then find the value of `lambda.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to calculate the values of \( u \) and \( V \) as defined in the question, and then find the value of \( \lambda \) such that \( V = \lambda U \). ### Step 1: Calculate \( u \) Given: \[ u = \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \min(\sqrt{3} \sin x, \cos x) \, dx \] To find \( u \), we need to determine where \( \sqrt{3} \sin x \) is less than or equal to \( \cos x \) within the limits of integration. 1. **Set up the inequality**: \[ \sqrt{3} \sin x \leq \cos x \] This can be rearranged to: \[ \tan x \leq \frac{1}{\sqrt{3}} \] The angle where \( \tan x = \frac{1}{\sqrt{3}} \) is \( x = \frac{\pi}{6} \). 2. **Determine the intervals**: - For \( x \in \left[\frac{\pi}{6}, \frac{\pi}{2}\right] \), \( \tan x \) increases from \( \frac{1}{\sqrt{3}} \) to \( \infty \). - Thus, \( \sqrt{3} \sin x \) is less than or equal to \( \cos x \) for \( x \in \left[\frac{\pi}{6}, \frac{\pi}{4}\right] \) and greater for \( x \in \left[\frac{\pi}{4}, \frac{\pi}{2}\right] \). 3. **Split the integral**: \[ u = \int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \sqrt{3} \sin x \, dx + \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \cos x \, dx \] 4. **Calculate the first integral**: \[ \int \sqrt{3} \sin x \, dx = -\sqrt{3} \cos x \] Evaluating from \( \frac{\pi}{6} \) to \( \frac{\pi}{4} \): \[ = -\sqrt{3} \left( \cos\frac{\pi}{4} - \cos\frac{\pi}{6} \right) = -\sqrt{3} \left( \frac{1}{\sqrt{2}} - \frac{\sqrt{3}}{2} \right) \] 5. **Calculate the second integral**: \[ \int \cos x \, dx = \sin x \] Evaluating from \( \frac{\pi}{4} \) to \( \frac{\pi}{2} \): \[ = \sin\frac{\pi}{2} - \sin\frac{\pi}{4} = 1 - \frac{1}{\sqrt{2}} \] 6. **Combine results**: \[ u = -\sqrt{3} \left( \frac{1}{\sqrt{2}} - \frac{\sqrt{3}}{2} \right) + \left( 1 - \frac{1}{\sqrt{2}} \right) \] ### Step 2: Calculate \( V \) Given: \[ V = \int_{-3}^{5} x^2 \, \text{sgn}(x-1) \, dx \] 1. **Split the integral based on the sign function**: \[ V = \int_{-3}^{1} -x^2 \, dx + \int_{1}^{5} x^2 \, dx \] 2. **Calculate the first integral**: \[ \int -x^2 \, dx = -\frac{x^3}{3} \] Evaluating from \( -3 \) to \( 1 \): \[ = -\frac{1^3}{3} - \left(-\frac{(-3)^3}{3}\right) = -\frac{1}{3} + 9 = \frac{26}{3} \] 3. **Calculate the second integral**: \[ \int x^2 \, dx = \frac{x^3}{3} \] Evaluating from \( 1 \) to \( 5 \): \[ = \frac{5^3}{3} - \frac{1^3}{3} = \frac{125}{3} - \frac{1}{3} = \frac{124}{3} \] 4. **Combine results**: \[ V = \frac{26}{3} + \frac{124}{3} = \frac{150}{3} = 50 \] ### Step 3: Find \( \lambda \) Given: \[ V = \lambda U \] Substituting the values: \[ 50 = \lambda \cdot u \] Now we need to find \( \lambda \): \[ \lambda = \frac{50}{u} \] ### Final Calculation of \( \lambda \) After substituting the computed value of \( u \) into the equation, we can find the final value of \( \lambda \).
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 2 Part - III|25 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 2 Part - IV|6 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 2 Part - 1|29 Videos
  • COMBINATORICS

    RESONANCE ENGLISH|Exercise Exercise-2 (Part-II: Previously Asked Question of RMO)|5 Videos
  • DPP

    RESONANCE ENGLISH|Exercise QUESTION|656 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int_(-pi//2)^(pi//2) sqrt(cosx-cos^3x) dx

int_(pi/6)^(pi/3) (sin x+ cos x)/(sqrt(sin 2x))dx

Evaluate int_(-pi//3)^(pi//3)(sqrt(1+sin2x))/(|cosx|)dx ,

int_(pi//3)^(pi//2) (sqrt(1+cosx))/((1-cosx)^(5//2))\ dx

I=int_(pi//5)^(3pi//10) (sinx)/(sinx+cosx)dx is equal to

Evaluate : int_(pi//6)^(pi//3)(sinx+cosx)/(sqrt(sin2x))\ dxdot

int_(0)^(pi/6) sin2x . cosx dx

Evaluate int_(pi/3)^(pi/2) e^x((1+sinx)/(1+cosx))dx

Evaluate: int_(-pi//2)^(pi//2)log(sinx+cosx)dx

Evaluate : int_(pi/5)^((3pi)/(10))(cosx)/(sinx+cosx)dx