Home
Class 12
MATHS
Let f(x) be a function satisying f(x) = ...

Let `f(x)` be a function satisying `f(x) = f((100)/(x)) AA x ge 0`. If `int_(1)^(10) (f(x))/(x) dx = 5` then find the value of `int_(1)^(100)(f(x))/(x) dx`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integral \( \int_{1}^{100} \frac{f(x)}{x} \, dx \) given that \( f(x) = f\left(\frac{100}{x}\right) \) for \( x \geq 0 \) and \( \int_{1}^{10} \frac{f(x)}{x} \, dx = 5 \). ### Step-by-Step Solution: 1. **Split the Integral**: We can split the integral from 1 to 100 into two parts: \[ \int_{1}^{100} \frac{f(x)}{x} \, dx = \int_{1}^{10} \frac{f(x)}{x} \, dx + \int_{10}^{100} \frac{f(x)}{x} \, dx \] 2. **Change of Variable in the Second Integral**: For the second integral \( \int_{10}^{100} \frac{f(x)}{x} \, dx \), we will use the substitution \( x = \frac{100}{t} \). Then, \( dx = -\frac{100}{t^2} \, dt \). - When \( x = 10 \), \( t = \frac{100}{10} = 10 \). - When \( x = 100 \), \( t = \frac{100}{100} = 1 \). Therefore, the limits of integration change from \( x = 10 \) to \( x = 100 \) into \( t = 10 \) to \( t = 1 \): \[ \int_{10}^{100} \frac{f(x)}{x} \, dx = \int_{10}^{1} \frac{f\left(\frac{100}{t}\right)}{\frac{100}{t}} \left(-\frac{100}{t^2}\right) dt \] This simplifies to: \[ = \int_{1}^{10} \frac{f\left(\frac{100}{t}\right)}{t} dt \] 3. **Using the Property of the Function**: From the property \( f(x) = f\left(\frac{100}{x}\right) \), we can replace \( f\left(\frac{100}{t}\right) \) with \( f(t) \): \[ \int_{10}^{100} \frac{f(x)}{x} \, dx = \int_{1}^{10} \frac{f(t)}{t} dt \] 4. **Combine the Integrals**: Now we can combine our results: \[ \int_{1}^{100} \frac{f(x)}{x} \, dx = \int_{1}^{10} \frac{f(x)}{x} \, dx + \int_{1}^{10} \frac{f(t)}{t} dt \] Since both integrals are equal: \[ \int_{1}^{100} \frac{f(x)}{x} \, dx = \int_{1}^{10} \frac{f(x)}{x} \, dx + \int_{1}^{10} \frac{f(x)}{x} \, dx = 2 \int_{1}^{10} \frac{f(x)}{x} \, dx \] 5. **Substituting the Given Value**: We know from the problem statement that \( \int_{1}^{10} \frac{f(x)}{x} \, dx = 5 \): \[ \int_{1}^{100} \frac{f(x)}{x} \, dx = 2 \times 5 = 10 \] ### Final Answer: Thus, the value of \( \int_{1}^{100} \frac{f(x)}{x} \, dx \) is \( \boxed{10} \).
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 2 Part - III|25 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 2 Part - IV|6 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 2 Part - 1|29 Videos
  • COMBINATORICS

    RESONANCE ENGLISH|Exercise Exercise-2 (Part-II: Previously Asked Question of RMO)|5 Videos
  • DPP

    RESONANCE ENGLISH|Exercise QUESTION|656 Videos

Similar Questions

Explore conceptually related problems

A continuous real function f satisfies f(2x)=3(f(x)) AA x in R . If int_0^1 f(x)dx=1, then find the value of int_1^2f(x)dx .

Let f(x) be a real valued function such that f(x)=f(121/x), AA x>0 .If int_1^11 f(x)/xdx=5 , then the value of int_1^121f(x)/xdx is equal to

A continuous real function f satisfies f(2x)=3f(x)AAx in RdotIfint_0^1f(x)dx=1, then find the value of int_1^2f(x)dx

A continuous real function f satisfies f(2x)=3(f(x)AAx in RdotIfint_0^1f(x)dx=1, then find the value of int_1^2f(x)dx

Evaluate: int_(-1)^4f(x)dx=4a n dint_2^4(3-f(x))dx=7, then find the value of int_-1^(2)f(x)dxdot

If f:RrarrR defined by f(x)=sinx+x , then find the value of int_0^pi(f^-1(x))dx

Let f(x) be a function defined on R satisfyin f(x) =f(1-x) for all x in R . Then int_(-1//2)^(1//2) f(x+(1)/(2))sin x dx equals

Let f(x) be a continuous and periodic function such that f(x)=f(x+T) for all xepsilonR,Tgt0 .If int_(-2T)^(a+5T)f(x)dx=19(ag0) and int_(0)^(T)f(x)dx=2 , then find the value of int_(0)^(a)f(x)dx .

Let f(x) be a differentiable function on R such that f'(5-x)= f'(x)AA x in[0,5] with f(0)=-10& f(5)=50 ,then the value of 5int_(0)^(5)f(x)dx

If for non zero x , 3f(x)+4f((1)/(x))=(1)/(x)-10 , then the value of int_(2)^(3)f(x)dx is