Home
Class 12
MATHS
Let I(1) = int(0)^(pi//4)1/((1+tanx)^(2)...

Let `I_(1) = int_(0)^(pi//4)1/((1+tanx)^(2))dx`, `I_(2) = int_(0)^(1)(dx)/((1+x)^(2)(1+x^(2)))` Then find the value of `(I_(1))/(I_(2))`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integrals \( I_1 \) and \( I_2 \) and then find the ratio \( \frac{I_1}{I_2} \). ### Step 1: Evaluate \( I_1 \) The integral \( I_1 \) is given by: \[ I_1 = \int_{0}^{\frac{\pi}{4}} \frac{1}{(1 + \tan x)^2} \, dx \] ### Step 2: Evaluate \( I_2 \) The integral \( I_2 \) is given by: \[ I_2 = \int_{0}^{1} \frac{1}{(1 + x)^2 (1 + x^2)} \, dx \] To simplify \( I_2 \), we can use the substitution \( x = \tan t \). Then, \( dx = \sec^2 t \, dt \) and the limits change from \( x = 0 \) to \( t = 0 \) and from \( x = 1 \) to \( t = \frac{\pi}{4} \). Substituting into \( I_2 \): \[ I_2 = \int_{0}^{\frac{\pi}{4}} \frac{\sec^2 t}{(1 + \tan t)^2 (1 + \tan^2 t)} \, dt \] Using the identity \( 1 + \tan^2 t = \sec^2 t \), we can rewrite \( I_2 \): \[ I_2 = \int_{0}^{\frac{\pi}{4}} \frac{\sec^2 t}{(1 + \tan t)^2 \sec^2 t} \, dt = \int_{0}^{\frac{\pi}{4}} \frac{1}{(1 + \tan t)^2} \, dt \] ### Step 3: Compare \( I_1 \) and \( I_2 \) Now we observe that: \[ I_1 = \int_{0}^{\frac{\pi}{4}} \frac{1}{(1 + \tan x)^2} \, dx \] \[ I_2 = \int_{0}^{\frac{\pi}{4}} \frac{1}{(1 + \tan t)^2} \, dt \] Since both integrals are equal, we have: \[ I_1 = I_2 \] ### Step 4: Calculate \( \frac{I_1}{I_2} \) Thus, we can conclude: \[ \frac{I_1}{I_2} = \frac{I_2}{I_2} = 1 \] ### Final Answer The value of \( \frac{I_1}{I_2} \) is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 2 Part - III|25 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 2 Part - IV|6 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 2 Part - 1|29 Videos
  • COMBINATORICS

    RESONANCE ENGLISH|Exercise Exercise-2 (Part-II: Previously Asked Question of RMO)|5 Videos
  • DPP

    RESONANCE ENGLISH|Exercise QUESTION|656 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2)(dx)/(1+tanx) is

I=int_(0)^( pi/4)(tan^(-1)x)^(2)/(1+x^2)dx

If I=int_(0)^(1) (dx)/(sqrt(1+x^(4)))dx then

Let I_(1)=int_(1)^(2)(x)/(sqrt(1+x^(2)))dx and I_(2)=int_(1)^(2)(1)/(x)dx .Then

Let I_(1)=int_(0)^(oo)(x^(2)sqrtx)/((1+x)^(6))dx,I_(2)=int_(0)^(oo)(xsqrtx)/((1+x)^(6))dx , then

If I_(1)=int_(0)^(2pi)sin^(3)xdx and I_(2)=int_(0)^(1)ln((1)/(x)-1)dx , then

If I_(1) =int _(0)^(1) (1+x ^(8))/(1+x^(4)) dx sand I_(2)=int _(0)^(1) (1+ x ^(9))/(1+x ^(2)) dx, then:

Let I_(1)=int_(0)^(pi//4)e^(x^(2))dx, I_(2) = int_(0)^(pi//4) e^(x)dx, I_(3) = int_(0)^(pi//4)e^(x^(2)).cos x dx , then :

Consider I_(1)=int_(10)^(20)(lnx)/(lnx+ln(30-x))dx and I_(2)=int_(20)^(30)(lnx)/(lnx +ln(50-x))dx . Then, the value of (I_(1))/(I_(2)) is

Let I_(1)=int_(0)^(1)(|lnx|)/(x^(2)+4x+1)dx and I_(2)=int_(1)^(oo)(lnx)/(x^(2)+4x+1)dx , then