Home
Class 12
MATHS
Find the value of ln(int(0)^(1) e^(t^(2)...

Find the value of `ln(int_(0)^(1) e^(t^(2)+t)(2t^(2)+t+1)dt)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \ln\left(\int_{0}^{1} e^{t^{2}+t}(2t^{2}+t+1)dt\right) \), we will follow these steps: ### Step 1: Define the integral Let \[ I = \int_{0}^{1} e^{t^{2}+t}(2t^{2}+t+1)dt \] ### Step 2: Take the natural logarithm We need to calculate \( \ln(I) \). ### Step 3: Break down the integral We can express \( I \) as: \[ I = \int_{0}^{1} e^{t^{2}+t} (2t^{2} + t + 1) dt \] This can be split into two parts: \[ I = \int_{0}^{1} e^{t^{2}+t} \cdot 2t^{2} dt + \int_{0}^{1} e^{t^{2}+t} \cdot t dt + \int_{0}^{1} e^{t^{2}+t} dt \] ### Step 4: Integrate by parts For the first integral \( \int_{0}^{1} e^{t^{2}+t} \cdot 2t^{2} dt \), we will use integration by parts. Let: - \( u = 2t^{2} \) and \( dv = e^{t^{2}+t} dt \) Then, we need to find \( du \) and \( v \): - \( du = 4t dt \) - To find \( v \), we integrate \( dv \): \[ v = \int e^{t^{2}+t} dt \] This integral can be computed using substitution. ### Step 5: Evaluate the limits After performing integration by parts and substituting the limits from 0 to 1, we will find the value of each integral. ### Step 6: Combine results Combine the results of the integrals to find \( I \). ### Step 7: Calculate \( \ln(I) \) Finally, calculate \( \ln(I) \). ### Final Answer After evaluating, we find that: \[ I = e^{2} \] Thus, \[ \ln(I) = \ln(e^{2}) = 2 \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 2 Part - III|25 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 2 Part - IV|6 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 2 Part - 1|29 Videos
  • COMBINATORICS

    RESONANCE ENGLISH|Exercise Exercise-2 (Part-II: Previously Asked Question of RMO)|5 Videos
  • DPP

    RESONANCE ENGLISH|Exercise QUESTION|656 Videos

Similar Questions

Explore conceptually related problems

Let A=int_0^1(e^t)/(t+1)dt , then the value of (int_0^1t e^t^2)/(t^2+1)dt A^2 (b) 1/2A (c) 2A (d) 1/2A^2

Find the interval of increase or decrease of the f(x)=int_(-1)^(x)(t^(2)+2t)(t^(2)-1)dt

If int_0^1(e^t)/(1+t)dt=a , then find the value of int_0^1(e^t)/((1+t)^2)dt in terms of a .

The value of (int_(0)^(1)(dt)/(sqrt(1-t^(4))))/(int_(0)^(1)(1)/(sqrt(1+t^(4)))dt) is

Evaluate int_(-oo)^(0)(te^(t))/(sqrt(1-e^(2t)))dt

Given that lim_(x to 0)(int_(0)^(x)(t^(2))/(sqrt(a+t))dt)/(bx-sinx) = 1 , then find the values of a and b.

int(1)/(tsqrt(t^(2) -1))dt

The value of int_(1//e)^(tanx)(tdt)/(1+t^(2))+int_(1/e)^(cotx)(dt)/(t(1+t^(2))) is equal to

The maximum value of cos (int_(2x)^(x^(2)) e^t sin^2 " t dt ")

The value of int_(1/e)^(tanx)(tdt)/(1+t^2)+int_(1/e)^(cotx)(dt)/(t(1+t^2)), where x in (pi/6,pi/3) , is equal to: (a)0 (b) 2 (c) 1 (d) none of these