Home
Class 12
MATHS
int(0)^(2pi)|sqrt(15) sin x + cos x|dx...

`int_(0)^(2pi)|sqrt(15) sin x + cos x|dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{2\pi} |\sqrt{15} \sin x + \cos x| \, dx \), we will follow these steps: ### Step 1: Rewrite the expression inside the absolute value We can express the integrand in a different form. Notice that: \[ \sqrt{15} \sin x + \cos x = 4 \left( \frac{\sqrt{15}}{4} \sin x + \frac{1}{4} \cos x \right) \] This can be rewritten using the sine addition formula: \[ \sqrt{15} \sin x + \cos x = 4 \sin\left(x + \alpha\right) \] where \( \alpha \) is an angle such that: \[ \cos \alpha = \frac{1}{4}, \quad \sin \alpha = \frac{\sqrt{15}}{4} \] ### Step 2: Change of variable Let \( t = x + \alpha \). Then, \( dx = dt \). The limits change as follows: - When \( x = 0 \), \( t = \alpha \) - When \( x = 2\pi \), \( t = 2\pi + \alpha \) Thus, we can rewrite the integral: \[ I = \int_{\alpha}^{2\pi + \alpha} |\sqrt{15} \sin(t - \alpha) + \cos(t - \alpha)| \, dt \] Since the sine function is periodic, we can use the property of integrals over a full period: \[ I = \int_{0}^{2\pi} |\sqrt{15} \sin t + \cos t| \, dt \] ### Step 3: Determine where the expression changes sign To evaluate the integral, we need to find when \( \sqrt{15} \sin t + \cos t = 0 \): \[ \sqrt{15} \sin t = -\cos t \implies \tan t = -\frac{1}{\sqrt{15}} \] This gives us two points in the interval \( [0, 2\pi] \). Let's denote these points as \( t_1 \) and \( t_2 \). ### Step 4: Evaluate the integral in segments We can split the integral at the points \( t_1 \) and \( t_2 \): \[ I = \int_{0}^{t_1} -(\sqrt{15} \sin t + \cos t) \, dt + \int_{t_1}^{t_2} (\sqrt{15} \sin t + \cos t) \, dt + \int_{t_2}^{2\pi} -(\sqrt{15} \sin t + \cos t) \, dt \] ### Step 5: Calculate each integral 1. For \( \int_{0}^{t_1} -(\sqrt{15} \sin t + \cos t) \, dt \) 2. For \( \int_{t_1}^{t_2} (\sqrt{15} \sin t + \cos t) \, dt \) 3. For \( \int_{t_2}^{2\pi} -(\sqrt{15} \sin t + \cos t) \, dt \) ### Step 6: Combine results After calculating the definite integrals, add the results together to find the value of \( I \). ### Final Result The final value of the integral \( I \) will be \( 16 \).
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 2 Part - III|25 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 2 Part - IV|6 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 2 Part - 1|29 Videos
  • COMBINATORICS

    RESONANCE ENGLISH|Exercise Exercise-2 (Part-II: Previously Asked Question of RMO)|5 Videos
  • DPP

    RESONANCE ENGLISH|Exercise QUESTION|656 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//6) sqrt(1-sin 2x) dx

int_(0)^(pi//2) e^(x) (sin x + cos x) dx

Evaluate int _(0)^(pi//2) sqrt(1+ cos x dx)

Prove that : int_(0)^(pi) sin^(2) x . cos x dx =0

int_(0)^(pi//2) sqrt(1- cos 2x) dx

int_(0)^(pi//2) sqrt(1- cos 2x) dx

Evaluate : int_(0)^(pi//2) sin^(3) x cos x dx

int_(0)^(pi//2) sin^(2) x cos ^(2) x dx

The value of the integral int_(0)^(pi//2) |sin x-cos x|dx , is

int_(0)^(pi//2) x sin x cos x dx