Home
Class 12
MATHS
If f(x)=x+int0^1 t(x+t) f(t)dt, then fin...

If `f(x)=x+int_0^1 t(x+t) f(t)dt,` then find the value of the definite integral `int_0^1 f(x)dx.`

Text Solution

Verified by Experts

The correct Answer is:
65
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 2 Part - III|25 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 2 Part - IV|6 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 2 Part - 1|29 Videos
  • COMBINATORICS

    RESONANCE ENGLISH|Exercise Exercise-2 (Part-II: Previously Asked Question of RMO)|5 Videos
  • DPP

    RESONANCE ENGLISH|Exercise QUESTION|656 Videos

Similar Questions

Explore conceptually related problems

If f(x)=x^(2)int_(0)^(1)f(t)dt+2 , then

If f(x)=1+1/x int_1^x f(t) dt, then the value of f(e^-1) is

If int_0^xf(t) dt=x+int_x^1 tf(t)dt, then the value of f(1)

If f(x)=int_0^x tf(t)dt+2, then

f(x)=int_0^x f(t) dt=x+int_x^1 tf(t)dt, then the value of f(1) is

If f(x)=x+int_0^1t(x+t)f(t) dt ,then the value of 23/2f(0) is equal to _________

If f(x)=int_0^x(sint)/t dt ,x >0, then

Let function F be defined as f(x)= int_1^x e^t/t dt x > 0 then the value of the integral int_1^1 e^t/(t+a) dt where a > 0 is

If int_(0)^(x^(2)(1+x))f(t)dt=x , then the value of f(2) is.

Given a function g, continous everywhere such that g (1)=5 and int _(0)^(1) g (t) dt =2. If f (x) =1/2 int _(0) ^(x) (x -t)^(2) g (t) dt, then find the value of f '(1)+f''(1).