Home
Class 12
MATHS
If the minimum of the following functio...

If the minimum of the following function `f(x)` defined at ` 0 lt x lt pi/2`.
`f(x) = int_(0)^(x)(d theta)/(cos theta) + int_(x)^(pi//2) (d theta)/(sin theta)` is equal to `ln(a+sqrt(b))` where a, b `in` N and b is not perfet square then find value of `(a+b)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start by analyzing the function defined by the integrals: \[ f(x) = \int_{0}^{x} \frac{d\theta}{\cos \theta} + \int_{x}^{\frac{\pi}{2}} \frac{d\theta}{\sin \theta} \] ### Step 1: Evaluate the first integral The first integral can be evaluated as follows: \[ \int_{0}^{x} \frac{d\theta}{\cos \theta} = \ln(\sec x + \tan x) \quad \text{(using the integral of } \frac{1}{\cos \theta} \text{)} \] ### Step 2: Evaluate the second integral The second integral can be evaluated similarly: \[ \int_{x}^{\frac{\pi}{2}} \frac{d\theta}{\sin \theta} = -\ln(\cos \theta) \bigg|_{x}^{\frac{\pi}{2}} = -\ln(0) + \ln(\cos x) = \ln(\cos x) \quad \text{(since } \cos(\frac{\pi}{2}) = 0\text{)} \] ### Step 3: Combine the results Now we combine the results of both integrals: \[ f(x) = \ln(\sec x + \tan x) + \ln(\cos x) \] Using the property of logarithms, we can combine these: \[ f(x) = \ln((\sec x + \tan x) \cdot \cos x) \] ### Step 4: Simplify the expression Now we simplify the expression: \[ \sec x = \frac{1}{\cos x} \quad \text{and} \quad \tan x = \frac{\sin x}{\cos x} \] Thus, \[ f(x) = \ln\left(\left(\frac{1}{\cos x} + \frac{\sin x}{\cos x}\right) \cdot \cos x\right) = \ln(1 + \sin x) \] ### Step 5: Find the minimum value of \(f(x)\) To find the minimum value of \(f(x)\) in the interval \(0 < x < \frac{\pi}{2}\), we can evaluate it at \(x = \frac{\pi}{4}\): \[ f\left(\frac{\pi}{4}\right) = \ln(1 + \sin\left(\frac{\pi}{4}\right)) = \ln(1 + \frac{\sqrt{2}}{2}) = \ln\left(\frac{2 + \sqrt{2}}{2}\right) \] This can be rewritten as: \[ f\left(\frac{\pi}{4}\right) = \ln(2 + \sqrt{2}) - \ln(2) = \ln\left(\frac{2 + \sqrt{2}}{2}\right) \] ### Step 6: Identify \(a\) and \(b\) From the problem, we have: \[ f(x) = \ln(a + \sqrt{b}) \] Comparing with our result, we see: \[ a = 2, \quad b = 2 \] ### Step 7: Calculate \(a + b\) Finally, we calculate: \[ a + b = 2 + 2 = 4 \] ### Conclusion Thus, the value of \(a + b\) is: \[ \boxed{4} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 2 Part - III|25 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 2 Part - IV|6 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 2 Part - 1|29 Videos
  • COMBINATORICS

    RESONANCE ENGLISH|Exercise Exercise-2 (Part-II: Previously Asked Question of RMO)|5 Videos
  • DPP

    RESONANCE ENGLISH|Exercise QUESTION|656 Videos

Similar Questions

Explore conceptually related problems

Evaluate int_(0)^(pi//2) cos theta tan ^(-1) ( sin theta)d theta .

If (pi)/(2) lt theta lt (3pi)/(2) then sqrt(tan^(2)theta-sin^(2)theta) is equal to :

If (pi)/(2) lt theta lt (3pi)/(2) then sqrt(tan^(2)theta-sin^(2)theta) is equal to :

Let f(x) = int_(x)^(x+(pi)/(3))|sin theta|d theta(x in [0,pi])

The value of f(k)=int_(0)^(pi//2) log (sin ^(2) theta +k^(2) cos^(2) theta) d theta is equal to

Show that int_0^(pi/2)sqrt((sin2theta))sintheta d theta=pi/4

Show that int_0^(pi/2)sqrt((sin2theta))sintheta d theta=pi/4

Find the maximum and minimum values of the function f(x) = x+ sin 2x, (0 lt x lt pi) .

If -pi lt theta lt -(pi)/(2)," then " |sqrt((1-sin theta)/(1+sintheta))+sqrt((1+sin theta)/(1-sin theta))| is equal to :

The value of int_(0)^(pi//2)(log(1+x sin^(2) theta))/(sin^(2)theta)d theta,xge0 is equal to