Home
Class 12
MATHS
If f(x) = 2x^(3)-15x^(2)+24x and g(x) = ...

If `f(x) = 2x^(3)-15x^(2)+24x` and `g(x) = int_(0)^(x)f(t) dt + int_(0)^(5-x) f(t) dt (0 lt x lt 5)`. Find the number of integers for which `g(x)` is increasing.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function \( g(x) \) defined as: \[ g(x) = \int_{0}^{x} f(t) \, dt + \int_{0}^{5-x} f(t) \, dt \] where \( f(x) = 2x^3 - 15x^2 + 24x \). ### Step 1: Differentiate \( g(x) \) Using the Leibniz rule for differentiation under the integral sign, we find \( g'(x) \): \[ g'(x) = \frac{d}{dx} \left( \int_{0}^{x} f(t) \, dt \right) + \frac{d}{dx} \left( \int_{0}^{5-x} f(t) \, dt \right) \] The first term differentiates to \( f(x) \). For the second term, we apply the chain rule: \[ \frac{d}{dx} \left( \int_{0}^{5-x} f(t) \, dt \right) = -f(5-x) \] Thus, we have: \[ g'(x) = f(x) - f(5-x) \] ### Step 2: Calculate \( f(5-x) \) Now we need to compute \( f(5-x) \): \[ f(5-x) = 2(5-x)^3 - 15(5-x)^2 + 24(5-x) \] Calculating each term: - \( (5-x)^3 = 125 - 75x + 15x^2 - x^3 \) - \( (5-x)^2 = 25 - 10x + x^2 \) Substituting these into \( f(5-x) \): \[ f(5-x) = 2(125 - 75x + 15x^2 - x^3) - 15(25 - 10x + x^2) + 24(5-x) \] Expanding this gives: \[ = 250 - 150x + 30x^2 - 2x^3 - 375 + 150x - 15x^2 + 120 - 24x \] Combining like terms: \[ = -2x^3 + (30x^2 - 15x^2) + (250 - 375 + 120 - 24x) \] \[ = -2x^3 + 15x^2 - 24x - 5 \] ### Step 3: Set up \( g'(x) \) Now we can write: \[ g'(x) = f(x) - f(5-x) = (2x^3 - 15x^2 + 24x) - (-2x^3 + 15x^2 - 24x - 5) \] Simplifying: \[ g'(x) = 2x^3 - 15x^2 + 24x + 2x^3 - 15x^2 + 24x + 5 \] \[ = 4x^3 - 30x^2 + 48x + 5 \] ### Step 4: Find critical points To find where \( g'(x) = 0 \): \[ 4x^3 - 30x^2 + 48x + 5 = 0 \] Using numerical methods or graphing, we find the roots. The roots are approximately: - \( x \approx -0.098 \) (not in the interval [0, 5]) - \( x = 2.5 \) - \( x = 5 \) ### Step 5: Determine intervals of increase We need to analyze the sign of \( g'(x) \) in the intervals: - \( (0, 2.5) \) - \( (2.5, 5) \) Using test points: 1. For \( x = 1 \) (in \( (0, 2.5) \)): \[ g'(1) = 4(1)^3 - 30(1)^2 + 48(1) + 5 = 4 - 30 + 48 + 5 = 27 > 0 \] So \( g(x) \) is increasing in \( (0, 2.5) \). 2. For \( x = 3 \) (in \( (2.5, 5) \)): \[ g'(3) = 4(3)^3 - 30(3)^2 + 48(3) + 5 = 108 - 270 + 144 + 5 = -13 < 0 \] So \( g(x) \) is decreasing in \( (2.5, 5) \). ### Step 6: Count integers in the increasing interval The integers in the interval \( (0, 2.5) \) are \( 1 \) and \( 2 \). Thus, there are **2 integers** for which \( g(x) \) is increasing. ### Final Answer The number of integers for which \( g(x) \) is increasing is **2**. ---
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 2 Part - III|25 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 2 Part - IV|6 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 2 Part - 1|29 Videos
  • COMBINATORICS

    RESONANCE ENGLISH|Exercise Exercise-2 (Part-II: Previously Asked Question of RMO)|5 Videos
  • DPP

    RESONANCE ENGLISH|Exercise QUESTION|656 Videos

Similar Questions

Explore conceptually related problems

If int_(0) ^(x) f (t) dt = x + int _(x ) ^(1) t f (t) dt, then the value of f (1) , is

If int_(0)^(x)f(t)dt = x^(2)-int_(0)^(x^(2))(f(t))/(t)dt then find f(1) .

lim_(x to 0)(int_(-x)^(x) f(t)dt)/(int_(0)^(2x) f(t+4)dt) is equal to

If f(-x)+f(x)=0 then int_a^x f(t) dt is

If f(x)=x^(2)int_(0)^(1)f(t)dt+2 , then

If f(x)=int_0^x tf(t)dt+2, then

Let f(x) = int_(0)^(x)|2t-3|dt , then f is

y=f(x) satisfies the relation int_(2)^(x)f(t)dt=(x^(2))/2+int_(x)^(2)t^(2)f(t)dt The value of x for which f(x) is increasing is

If int_(0)^(x) f(t)dt=x^(2)+2x-int_(0)^(x) tf(t)dt, x in (0,oo) . Then, f(x) is

If int_(0)^(x)f(t)dt=e^(x)-ae^(2x)int_(0)^(1)f(t)e^(-t)dt , then