Home
Class 12
MATHS
((int(-1/2)^(1/2)cos 2x *log((1+x)/(1-x)...

`((int_(-1/2)^(1/2)cos 2x *log((1+x)/(1-x))dx))/((int_(0)^(1/2)cos 2x *log((1+x)/(1-x))dx))` equals

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to evaluate the expression: \[ \frac{\int_{-\frac{1}{2}}^{\frac{1}{2}} \cos(2x) \log\left(\frac{1+x}{1-x}\right) \, dx}{\int_{0}^{\frac{1}{2}} \cos(2x) \log\left(\frac{1+x}{1-x}\right) \, dx} \] ### Step 1: Define the function Let \[ f(x) = \cos(2x) \log\left(\frac{1+x}{1-x}\right) \] ### Step 2: Check if the function is odd or even To determine whether \( f(x) \) is odd or even, we need to compute \( f(-x) \): \[ f(-x) = \cos(-2x) \log\left(\frac{1-x}{1+x}\right) \] Using the property of cosine, \( \cos(-\theta) = \cos(\theta) \): \[ f(-x) = \cos(2x) \log\left(\frac{1-x}{1+x}\right) \] ### Step 3: Simplify \( f(-x) \) We can rewrite the logarithm: \[ \log\left(\frac{1-x}{1+x}\right) = \log\left(\frac{1+x}{1-x}\right)^{-1} = -\log\left(\frac{1+x}{1-x}\right) \] Thus, we have: \[ f(-x) = \cos(2x) \left(-\log\left(\frac{1+x}{1-x}\right)\right) = -f(x) \] ### Step 4: Conclusion about the function Since \( f(-x) = -f(x) \), we conclude that \( f(x) \) is an odd function. ### Step 5: Evaluate the integral from \(-\frac{1}{2}\) to \(\frac{1}{2}\) For odd functions, the integral over symmetric limits around zero is zero: \[ \int_{-\frac{1}{2}}^{\frac{1}{2}} f(x) \, dx = 0 \] ### Step 6: Evaluate the denominator The denominator is: \[ \int_{0}^{\frac{1}{2}} f(x) \, dx \] This integral is not zero, as it is the integral of an odd function over a non-symmetric interval. ### Step 7: Final result Thus, the entire expression simplifies to: \[ \frac{0}{\int_{0}^{\frac{1}{2}} f(x) \, dx} = 0 \] Therefore, the final answer is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 3 Part - II|25 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise High Level Problem|26 Videos
  • DEFINITE INTEGRATION & ITS APPLICATION

    RESONANCE ENGLISH|Exercise Exercise 2 Part - IV|6 Videos
  • COMBINATORICS

    RESONANCE ENGLISH|Exercise Exercise-2 (Part-II: Previously Asked Question of RMO)|5 Videos
  • DPP

    RESONANCE ENGLISH|Exercise QUESTION|656 Videos

Similar Questions

Explore conceptually related problems

The value of ({int_(-1//2)^(1//2) cos2x.log((1+x)/(1-x))dx})/({int_(0)^(1//2)cos2x.log((1+x)/(1-x))dx}) is

If int_(0)^(1) (log(1+x)/(1+x^(2))dx=

int(1)/( 1+cos 2x ) dx

int_(0)^(1//2)(1)/(1-x^(2))ln.(1-x)/(1+x)dx is equal to

Evaluate : int_(1)^(2) (cos (log x))/(x) dx

Evaluate : int_(0)^(1)(log(1+x))/(1+x^2)dx

int(1)/(1-cos 2x) dx

int_(0)^(1)x log (1+2 x)dx

Evaluate int_(-1)^(1) log ((2-x)/( 2+x)) dx

int_(1)^(2) (dx)/(x(1+log x)^(2))

RESONANCE ENGLISH-DEFINITE INTEGRATION & ITS APPLICATION -Exercise 3 Part - I
  1. Given that for each a epsilon(0,1),lim(hto 0^(+)) int(h)^(1-h)t^(-a)(1...

    Text Solution

    |

  2. Given that for each a epsilon(0,1),lim(hto 0^(+)) int(h)^(1-h)t^(-a)(1...

    Text Solution

    |

  3. ((int(-1/2)^(1/2)cos 2x *log((1+x)/(1-x))dx))/((int(0)^(1/2)cos 2x *lo...

    Text Solution

    |

  4. Let f: RvecR be a function defined by f(x)={[x],(xlt=2) \ \ (0,x >2) ...

    Text Solution

    |

  5. If alpha=int0^1(e^(9x+3tan^(-1)x))((12+9x^2)/(1+x^2))dx where tan^(-1)...

    Text Solution

    |

  6. Let f: R rarr R be a continuous odd function, which vanishes exactly a...

    Text Solution

    |

  7. Let f(x)=7tan^8x+7tan^6x-3tan^4x-3tan^2x for all x in (-pi/2,pi/2) . ...

    Text Solution

    |

  8. Let f'(x)=(192x^(3))/(2+sin^(4)pix) for all x epsilonR with f(1/2)=0. ...

    Text Solution

    |

  9. The option(s) with the values of aa n dL that satisfy the following eq...

    Text Solution

    |

  10. Let F:RtoR be a thrice differntiable function. Suppose that F(1)=0,F(3...

    Text Solution

    |

  11. Let F : R to R be a thrice differentiable function . Suppose that F(...

    Text Solution

    |

  12. Let F(x)=intx^[x^2+pi/6](2cos^2t)dt for all x in R and f:[0,1/2] -> [0...

    Text Solution

    |

  13. The total number for distinct x epsilon[0,1] for which int(0)^(x)(t^(2...

    Text Solution

    |

  14. Evaluate: int(-pi//2)^(pi//2)(x^2cosx)/(1+e^x)dx

    Text Solution

    |

  15. Area of the region {(x,y) in R^(2):ygesqrt(|x+3|),5ylex+9le15} is eq...

    Text Solution

    |

  16. Let f:Rto(0,1) be a continuous function. Then, which of the following ...

    Text Solution

    |

  17. Let f: R -> R be a differentiable function such that f(0) = 0,f(pi/2)=...

    Text Solution

    |

  18. If Isum(k=1)^(98)intk^(k+1)(k+1)/(x(x+1))dx ,t h e n: (a) I<(49)/(50...

    Text Solution

    |

  19. If the line x = alpha divides the area of region R = {(x,y) in R^(2) :...

    Text Solution

    |

  20. If g(x)=int(sinx)^("sin"(2x))sin^(-1)(t)dt ,t h e n : (a) g^(prime)(...

    Text Solution

    |